|
# Text generation web UI |
|
|
|
A Gradio web UI for Large Language Models. |
|
|
|
Its goal is to become the [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui) of text generation. |
|
|
|
|![Image1](https://github.com/oobabooga/screenshots/raw/main/print_instruct.png) | ![Image2](https://github.com/oobabooga/screenshots/raw/main/print_chat.png) | |
|
|:---:|:---:| |
|
|![Image1](https://github.com/oobabooga/screenshots/raw/main/print_default.png) | ![Image2](https://github.com/oobabooga/screenshots/raw/main/print_parameters.png) | |
|
|
|
## Features |
|
|
|
* 3 interface modes: default (two columns), notebook, and chat |
|
* Multiple model backends: [transformers](https://github.com/huggingface/transformers), [llama.cpp](https://github.com/ggerganov/llama.cpp), [ExLlama](https://github.com/turboderp/exllama), [ExLlamaV2](https://github.com/turboderp/exllamav2), [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ), [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa), [CTransformers](https://github.com/marella/ctransformers), [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) |
|
* Dropdown menu for quickly switching between different models |
|
* LoRA: load and unload LoRAs on the fly, train a new LoRA using QLoRA |
|
* Precise instruction templates for chat mode, including Llama-2-chat, Alpaca, Vicuna, WizardLM, StableLM, and many others |
|
* 4-bit, 8-bit, and CPU inference through the transformers library |
|
* Use llama.cpp models with transformers samplers (`llamacpp_HF` loader) |
|
* [Multimodal pipelines, including LLaVA and MiniGPT-4](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/multimodal) |
|
* [Extensions framework](https://github.com/oobabooga/text-generation-webui/wiki/07-%E2%80%90-Extensions) |
|
* [Custom chat characters](https://github.com/oobabooga/text-generation-webui/wiki/03-%E2%80%90-Parameters-Tab#character) |
|
* Markdown output with LaTeX rendering, to use for instance with [GALACTICA](https://github.com/paperswithcode/galai) |
|
* OpenAI-compatible API server with Chat and Completions endpoints -- see the [examples](https://github.com/oobabooga/text-generation-webui/wiki/12-%E2%80%90-OpenAI-API#examples) |
|
|
|
## Documentation |
|
|
|
To learn how to use the various features, check out the Documentation: |
|
|
|
https://github.com/oobabooga/text-generation-webui/wiki |
|
|
|
## Installation |
|
|
|
### One-click installers |
|
|
|
1) Clone or [download](https://github.com/oobabooga/text-generation-webui/archive/refs/heads/main.zip) the repository. |
|
2) Run the `start_linux.sh`, `start_windows.bat`, `start_macos.sh`, or `start_wsl.bat` script depending on your OS. |
|
3) Select your GPU vendor when asked. |
|
4) Have fun! |
|
|
|
#### How it works |
|
|
|
The script creates a folder called `installer_files` where it sets up a Conda environment using Miniconda. The installation is self-contained: if you want to reinstall, just delete `installer_files` and run the start script again. |
|
|
|
To launch the webui in the future after it is already installed, run the same `start` script. |
|
|
|
#### Getting updates |
|
|
|
Run `update_linux.sh`, `update_windows.bat`, `update_macos.sh`, or `update_wsl.bat`. |
|
|
|
#### Running commands |
|
|
|
If you ever need to install something manually in the `installer_files` environment, you can launch an interactive shell using the cmd script: `cmd_linux.sh`, `cmd_windows.bat`, `cmd_macos.sh`, or `cmd_wsl.bat`. |
|
|
|
#### Defining command-line flags |
|
|
|
To define persistent command-line flags like `--listen` or `--api`, edit the `CMD_FLAGS.txt` file with a text editor and add them there. Flags can also be provided directly to the start scripts, for instance, `./start-linux.sh --listen`. |
|
|
|
#### Other info |
|
|
|
* There is no need to run any of those scripts as admin/root. |
|
* For additional instructions about AMD setup, WSL setup, and nvcc installation, consult [the documentation](https://github.com/oobabooga/text-generation-webui/wiki). |
|
* The installer has been tested mostly on NVIDIA GPUs. If you can find a way to improve it for your AMD/Intel Arc/Mac Metal GPU, you are highly encouraged to submit a PR to this repository. The main file to be edited is `one_click.py`. |
|
* For automated installation, you can use the `GPU_CHOICE`, `USE_CUDA118`, `LAUNCH_AFTER_INSTALL`, and `INSTALL_EXTENSIONS` environment variables. For instance: `GPU_CHOICE=A USE_CUDA118=FALSE LAUNCH_AFTER_INSTALL=FALSE INSTALL_EXTENSIONS=FALSE ./start_linux.sh`. |
|
|
|
### Manual installation using Conda |
|
|
|
Recommended if you have some experience with the command-line. |
|
|
|
#### 0. Install Conda |
|
|
|
https://docs.conda.io/en/latest/miniconda.html |
|
|
|
On Linux or WSL, it can be automatically installed with these two commands ([source](https://educe-ubc.github.io/conda.html)): |
|
|
|
``` |
|
curl -sL "https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh" > "Miniconda3.sh" |
|
bash Miniconda3.sh |
|
``` |
|
|
|
#### 1. Create a new conda environment |
|
|
|
``` |
|
conda create -n textgen python=3.11 |
|
conda activate textgen |
|
``` |
|
|
|
#### 2. Install Pytorch |
|
|
|
| System | GPU | Command | |
|
|--------|---------|---------| |
|
| Linux/WSL | NVIDIA | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121` | |
|
| Linux/WSL | CPU only | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu` | |
|
| Linux | AMD | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.6` | |
|
| MacOS + MPS | Any | `pip3 install torch torchvision torchaudio` | |
|
| Windows | NVIDIA | `pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121` | |
|
| Windows | CPU only | `pip3 install torch torchvision torchaudio` | |
|
|
|
The up-to-date commands can be found here: https://pytorch.org/get-started/locally/. |
|
|
|
For NVIDIA, you may also need to manually install the CUDA runtime libraries: |
|
|
|
``` |
|
conda install -y -c "nvidia/label/cuda-12.1.0" cuda-runtime |
|
``` |
|
|
|
#### 3. Install the web UI |
|
|
|
``` |
|
git clone https://github.com/oobabooga/text-generation-webui |
|
cd text-generation-webui |
|
pip install -r <requirements file according to table below> |
|
``` |
|
|
|
Requirements file to use: |
|
|
|
| GPU | CPU | requirements file to use | |
|
|--------|---------|---------| |
|
| NVIDIA | has AVX2 | `requirements.txt` | |
|
| NVIDIA | no AVX2 | `requirements_noavx2.txt` | |
|
| AMD | has AVX2 | `requirements_amd.txt` | |
|
| AMD | no AVX2 | `requirements_amd_noavx2.txt` | |
|
| CPU only | has AVX2 | `requirements_cpu_only.txt` | |
|
| CPU only | no AVX2 | `requirements_cpu_only_noavx2.txt` | |
|
| Apple | Intel | `requirements_apple_intel.txt` | |
|
| Apple | Apple Silicon | `requirements_apple_silicon.txt` | |
|
|
|
##### AMD GPU on Windows |
|
|
|
1) Use `requirements_cpu_only.txt` or `requirements_cpu_only_noavx2.txt` in the command above. |
|
|
|
2) Manually install llama-cpp-python using the appropriate command for your hardware: [Installation from PyPI](https://github.com/abetlen/llama-cpp-python#installation-with-hardware-acceleration). |
|
* Use the `LLAMA_HIPBLAS=on` toggle. |
|
* Note the [Windows remarks](https://github.com/abetlen/llama-cpp-python#windows-remarks). |
|
|
|
3) Manually install AutoGPTQ: [Installation](https://github.com/PanQiWei/AutoGPTQ#install-from-source). |
|
* Perform the from-source installation - there are no prebuilt ROCm packages for Windows. |
|
|
|
4) Manually install [ExLlama](https://github.com/turboderp/exllama) by simply cloning it into the `repositories` folder (it will be automatically compiled at runtime after that): |
|
|
|
```sh |
|
cd text-generation-webui |
|
git clone https://github.com/turboderp/exllama repositories/exllama |
|
``` |
|
|
|
##### Older NVIDIA GPUs |
|
|
|
1) For Kepler GPUs and older, you will need to install CUDA 11.8 instead of 12: |
|
|
|
``` |
|
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 |
|
conda install -y -c "nvidia/label/cuda-11.8.0" cuda-runtime |
|
``` |
|
|
|
2) bitsandbytes >= 0.39 may not work. In that case, to use `--load-in-8bit`, you may have to downgrade like this: |
|
* Linux: `pip install bitsandbytes==0.38.1` |
|
* Windows: `pip install https://github.com/jllllll/bitsandbytes-windows-webui/raw/main/bitsandbytes-0.38.1-py3-none-any.whl` |
|
|
|
##### Manual install |
|
|
|
The requirments*.txt above contain various precompiled wheels. If you wish to compile things manually, or if you need to because no suitable wheels are available for your hardware, you can use `requirements_nowheels.txt` and then install your desired loaders manually. |
|
|
|
### Alternative: Docker |
|
|
|
``` |
|
ln -s docker/{Dockerfile,docker-compose.yml,.dockerignore} . |
|
cp docker/.env.example .env |
|
# Edit .env and set TORCH_CUDA_ARCH_LIST based on your GPU model |
|
docker compose up --build |
|
``` |
|
|
|
* You need to have docker compose v2.17 or higher installed. See [this guide](https://github.com/oobabooga/text-generation-webui/wiki/09-%E2%80%90-Docker) for instructions. |
|
* For additional docker files, check out [this repository](https://github.com/Atinoda/text-generation-webui-docker). |
|
|
|
### Updating the requirements |
|
|
|
From time to time, the `requirements*.txt` changes. To update, use these commands: |
|
|
|
``` |
|
conda activate textgen |
|
cd text-generation-webui |
|
pip install -r <requirements file that you've used> --upgrade |
|
``` |
|
|
|
## Downloading models |
|
|
|
Models should be placed in the `text-generation-webui/models` folder. They are usually downloaded from [Hugging Face](https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads). |
|
|
|
* Transformers or GPTQ models are made of several files and must be placed in a subfolder. Example: |
|
|
|
``` |
|
text-generation-webui |
|
├── models |
|
│ ├── lmsys_vicuna-33b-v1.3 |
|
│ │ ├── config.json |
|
│ │ ├── generation_config.json |
|
│ │ ├── pytorch_model-00001-of-00007.bin |
|
│ │ ├── pytorch_model-00002-of-00007.bin |
|
│ │ ├── pytorch_model-00003-of-00007.bin |
|
│ │ ├── pytorch_model-00004-of-00007.bin |
|
│ │ ├── pytorch_model-00005-of-00007.bin |
|
│ │ ├── pytorch_model-00006-of-00007.bin |
|
│ │ ├── pytorch_model-00007-of-00007.bin |
|
│ │ ├── pytorch_model.bin.index.json |
|
│ │ ├── special_tokens_map.json |
|
│ │ ├── tokenizer_config.json |
|
│ │ └── tokenizer.model |
|
``` |
|
|
|
* GGUF models are a single file and should be placed directly into `models`. Example: |
|
|
|
``` |
|
text-generation-webui |
|
├── models |
|
│ ├── llama-2-13b-chat.Q4_K_M.gguf |
|
``` |
|
|
|
In both cases, you can use the "Model" tab of the UI to download the model from Hugging Face automatically. It is also possible to download via the command-line with `python download-model.py organization/model` (use `--help` to see all the options). |
|
|
|
#### GPT-4chan |
|
|
|
<details> |
|
<summary> |
|
Instructions |
|
</summary> |
|
|
|
[GPT-4chan](https://huggingface.co/ykilcher/gpt-4chan) has been shut down from Hugging Face, so you need to download it elsewhere. You have two options: |
|
|
|
* Torrent: [16-bit](https://archive.org/details/gpt4chan_model_float16) / [32-bit](https://archive.org/details/gpt4chan_model) |
|
* Direct download: [16-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model_float16/) / [32-bit](https://theswissbay.ch/pdf/_notpdf_/gpt4chan_model/) |
|
|
|
The 32-bit version is only relevant if you intend to run the model in CPU mode. Otherwise, you should use the 16-bit version. |
|
|
|
After downloading the model, follow these steps: |
|
|
|
1. Place the files under `models/gpt4chan_model_float16` or `models/gpt4chan_model`. |
|
2. Place GPT-J 6B's config.json file in that same folder: [config.json](https://huggingface.co/EleutherAI/gpt-j-6B/raw/main/config.json). |
|
3. Download GPT-J 6B's tokenizer files (they will be automatically detected when you attempt to load GPT-4chan): |
|
|
|
``` |
|
python download-model.py EleutherAI/gpt-j-6B --text-only |
|
``` |
|
|
|
When you load this model in default or notebook modes, the "HTML" tab will show the generated text in 4chan format: |
|
|
|
![Image3](https://github.com/oobabooga/screenshots/raw/main/gpt4chan.png) |
|
|
|
</details> |
|
|
|
## Starting the web UI |
|
|
|
conda activate textgen |
|
cd text-generation-webui |
|
python server.py |
|
|
|
Then browse to |
|
|
|
`http://localhost:7860/?__theme=dark` |
|
|
|
Optionally, you can use the following command-line flags: |
|
|
|
#### Basic settings |
|
|
|
| Flag | Description | |
|
|--------------------------------------------|-------------| |
|
| `-h`, `--help` | show this help message and exit | |
|
| `--multi-user` | Multi-user mode. Chat histories are not saved or automatically loaded. WARNING: this is likely not safe for sharing publicly. | |
|
| `--character CHARACTER` | The name of the character to load in chat mode by default. | |
|
| `--model MODEL` | Name of the model to load by default. | |
|
| `--lora LORA [LORA ...]` | The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces. | |
|
| `--model-dir MODEL_DIR` | Path to directory with all the models. | |
|
| `--lora-dir LORA_DIR` | Path to directory with all the loras. | |
|
| `--model-menu` | Show a model menu in the terminal when the web UI is first launched. | |
|
| `--settings SETTINGS_FILE` | Load the default interface settings from this yaml file. See `settings-template.yaml` for an example. If you create a file called `settings.yaml`, this file will be loaded by default without the need to use the `--settings` flag. | |
|
| `--extensions EXTENSIONS [EXTENSIONS ...]` | The list of extensions to load. If you want to load more than one extension, write the names separated by spaces. | |
|
| `--verbose` | Print the prompts to the terminal. | |
|
| `--chat-buttons` | Show buttons on the chat tab instead of a hover menu. | |
|
|
|
#### Model loader |
|
|
|
| Flag | Description | |
|
|--------------------------------------------|-------------| |
|
| `--loader LOADER` | Choose the model loader manually, otherwise, it will get autodetected. Valid options: transformers, exllama_hf, exllamav2_hf, exllama, exllamav2, autogptq, gptq-for-llama, llama.cpp, llamacpp_hf, ctransformers, autoawq. | |
|
|
|
#### Accelerate/transformers |
|
|
|
| Flag | Description | |
|
|---------------------------------------------|-------------| |
|
| `--cpu` | Use the CPU to generate text. Warning: Training on CPU is extremely slow. | |
|
| `--auto-devices` | Automatically split the model across the available GPU(s) and CPU. | |
|
| `--gpu-memory GPU_MEMORY [GPU_MEMORY ...]` | Maximum GPU memory in GiB to be allocated per GPU. Example: --gpu-memory 10 for a single GPU, --gpu-memory 10 5 for two GPUs. You can also set values in MiB like --gpu-memory 3500MiB. | |
|
| `--cpu-memory CPU_MEMORY` | Maximum CPU memory in GiB to allocate for offloaded weights. Same as above. | |
|
| `--disk` | If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk. | |
|
| `--disk-cache-dir DISK_CACHE_DIR` | Directory to save the disk cache to. Defaults to "cache". | |
|
| `--load-in-8bit` | Load the model with 8-bit precision (using bitsandbytes). | |
|
| `--bf16` | Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU. | |
|
| `--no-cache` | Set `use_cache` to `False` while generating text. This reduces VRAM usage slightly, but it comes at a performance cost. | |
|
| `--xformers` | Use xformer's memory efficient attention. This is really old and probably doesn't do anything. | |
|
| `--sdp-attention` | Use PyTorch 2.0's SDP attention. Same as above. | |
|
| `--trust-remote-code` | Set `trust_remote_code=True` while loading the model. Necessary for some models. | |
|
| `--use_fast` | Set `use_fast=True` while loading the tokenizer. | |
|
| `--use_flash_attention_2` | Set use_flash_attention_2=True while loading the model. | |
|
|
|
#### Accelerate 4-bit |
|
|
|
⚠️ Requires minimum compute of 7.0 on Windows at the moment. |
|
|
|
| Flag | Description | |
|
|---------------------------------------------|-------------| |
|
| `--load-in-4bit` | Load the model with 4-bit precision (using bitsandbytes). | |
|
| `--use_double_quant` | use_double_quant for 4-bit. | |
|
| `--compute_dtype COMPUTE_DTYPE` | compute dtype for 4-bit. Valid options: bfloat16, float16, float32. | |
|
| `--quant_type QUANT_TYPE` | quant_type for 4-bit. Valid options: nf4, fp4. | |
|
|
|
#### llama.cpp |
|
|
|
| Flag | Description | |
|
|-------------|-------------| |
|
| `--n_ctx N_CTX` | Size of the prompt context. | |
|
| `--threads` | Number of threads to use. | |
|
| `--threads-batch THREADS_BATCH` | Number of threads to use for batches/prompt processing. | |
|
| `--no_mul_mat_q` | Disable the mulmat kernels. | |
|
| `--n_batch` | Maximum number of prompt tokens to batch together when calling llama_eval. | |
|
| `--no-mmap` | Prevent mmap from being used. | |
|
| `--mlock` | Force the system to keep the model in RAM. | |
|
| `--n-gpu-layers N_GPU_LAYERS` | Number of layers to offload to the GPU. | |
|
| `--tensor_split TENSOR_SPLIT` | Split the model across multiple GPUs. Comma-separated list of proportions. Example: 18,17. | |
|
| `--llama_cpp_seed SEED` | Seed for llama-cpp models. Default is 0 (random). | |
|
| `--numa` | Activate NUMA task allocation for llama.cpp. | |
|
| `--logits_all`| Needs to be set for perplexity evaluation to work. Otherwise, ignore it, as it makes prompt processing slower. | |
|
| `--cache-capacity CACHE_CAPACITY` | Maximum cache capacity (llama-cpp-python). Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed. | |
|
|
|
#### ExLlama |
|
|
|
| Flag | Description | |
|
|------------------|-------------| |
|
|`--gpu-split` | Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7. | |
|
|`--max_seq_len MAX_SEQ_LEN` | Maximum sequence length. | |
|
|`--cfg-cache` | ExLlama_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader, but not necessary for CFG with base ExLlama. | |
|
|`--no_flash_attn` | Force flash-attention to not be used. | |
|
|`--cache_8bit` | Use 8-bit cache to save VRAM. | |
|
|
|
#### AutoGPTQ |
|
|
|
| Flag | Description | |
|
|------------------|-------------| |
|
| `--triton` | Use triton. | |
|
| `--no_inject_fused_attention` | Disable the use of fused attention, which will use less VRAM at the cost of slower inference. | |
|
| `--no_inject_fused_mlp` | Triton mode only: disable the use of fused MLP, which will use less VRAM at the cost of slower inference. | |
|
| `--no_use_cuda_fp16` | This can make models faster on some systems. | |
|
| `--desc_act` | For models that don't have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig. | |
|
| `--disable_exllama` | Disable ExLlama kernel, which can improve inference speed on some systems. | |
|
|
|
#### GPTQ-for-LLaMa |
|
|
|
| Flag | Description | |
|
|---------------------------|-------------| |
|
| `--wbits WBITS` | Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported. | |
|
| `--model_type MODEL_TYPE` | Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported. | |
|
| `--groupsize GROUPSIZE` | Group size. | |
|
| `--pre_layer PRE_LAYER [PRE_LAYER ...]` | The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg `--pre_layer 30 60`. | |
|
| `--checkpoint CHECKPOINT` | The path to the quantized checkpoint file. If not specified, it will be automatically detected. | |
|
| `--monkey-patch` | Apply the monkey patch for using LoRAs with quantized models. | |
|
|
|
#### ctransformers |
|
|
|
| Flag | Description | |
|
|-------------|-------------| |
|
| `--model_type MODEL_TYPE` | Model type of pre-quantized model. Currently gpt2, gptj, gptneox, falcon, llama, mpt, starcoder (gptbigcode), dollyv2, and replit are supported. | |
|
|
|
#### DeepSpeed |
|
|
|
| Flag | Description | |
|
|---------------------------------------|-------------| |
|
| `--deepspeed` | Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration. | |
|
| `--nvme-offload-dir NVME_OFFLOAD_DIR` | DeepSpeed: Directory to use for ZeRO-3 NVME offloading. | |
|
| `--local_rank LOCAL_RANK` | DeepSpeed: Optional argument for distributed setups. | |
|
|
|
#### RWKV |
|
|
|
| Flag | Description | |
|
|---------------------------------|-------------| |
|
| `--rwkv-strategy RWKV_STRATEGY` | RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8". | |
|
| `--rwkv-cuda-on` | RWKV: Compile the CUDA kernel for better performance. | |
|
|
|
#### RoPE (for llama.cpp, ExLlama, ExLlamaV2, and transformers) |
|
|
|
| Flag | Description | |
|
|------------------|-------------| |
|
| `--alpha_value ALPHA_VALUE` | Positional embeddings alpha factor for NTK RoPE scaling. Use either this or `compress_pos_emb`, not both. | |
|
| `--rope_freq_base ROPE_FREQ_BASE` | If greater than 0, will be used instead of alpha_value. Those two are related by `rope_freq_base = 10000 * alpha_value ^ (64 / 63)`. | |
|
| `--compress_pos_emb COMPRESS_POS_EMB` | Positional embeddings compression factor. Should be set to `(context length) / (model's original context length)`. Equal to `1/rope_freq_scale`. | |
|
|
|
#### Gradio |
|
|
|
| Flag | Description | |
|
|---------------------------------------|-------------| |
|
| `--listen` | Make the web UI reachable from your local network. | |
|
| `--listen-port LISTEN_PORT` | The listening port that the server will use. | |
|
| `--listen-host LISTEN_HOST` | The hostname that the server will use. | |
|
| `--share` | Create a public URL. This is useful for running the web UI on Google Colab or similar. | |
|
| `--auto-launch` | Open the web UI in the default browser upon launch. | |
|
| `--gradio-auth USER:PWD` | Set Gradio authentication password in the format "username:password". Multiple credentials can also be supplied with "u1:p1,u2:p2,u3:p3". | |
|
| `--gradio-auth-path GRADIO_AUTH_PATH` | Set the Gradio authentication file path. The file should contain one or more user:password pairs in the same format as above. | |
|
| `--ssl-keyfile SSL_KEYFILE` | The path to the SSL certificate key file. | |
|
| `--ssl-certfile SSL_CERTFILE` | The path to the SSL certificate cert file. | |
|
|
|
#### API |
|
|
|
| Flag | Description | |
|
|---------------------------------------|-------------| |
|
| `--api` | Enable the API extension. | |
|
| `--public-api` | Create a public URL for the API using Cloudfare. | |
|
| `--public-api-id PUBLIC_API_ID` | Tunnel ID for named Cloudflare Tunnel. Use together with public-api option. | |
|
| `--api-port API_PORT` | The listening port for the API. | |
|
| `--api-key API_KEY` | API authentication key. | |
|
|
|
#### Multimodal |
|
|
|
| Flag | Description | |
|
|---------------------------------------|-------------| |
|
| `--multimodal-pipeline PIPELINE` | The multimodal pipeline to use. Examples: `llava-7b`, `llava-13b`. | |
|
|
|
## Google Colab notebook |
|
|
|
https://colab.research.google.com/github/oobabooga/text-generation-webui/blob/main/Colab-TextGen-GPU.ipynb |
|
|
|
## Contributing |
|
|
|
If you would like to contribute to the project, check out the [Contributing guidelines](https://github.com/oobabooga/text-generation-webui/wiki/Contributing-guidelines). |
|
|
|
## Community |
|
|
|
* Subreddit: https://www.reddit.com/r/oobabooga/ |
|
* Discord: https://discord.gg/jwZCF2dPQN |
|
|
|
## Acknowledgment |
|
|
|
In August 2023, [Andreessen Horowitz](https://a16z.com/) (a16z) provided a generous grant to encourage and support my independent work on this project. I am **extremely** grateful for their trust and recognition, which will allow me to dedicate more time towards realizing the full potential of text-generation-webui. |
|
|