Spaces:
Running
Running
import os | |
import streamlit as st | |
import fitz # PyMuPDF | |
import openai | |
from dotenv import load_dotenv | |
from pinecone import Pinecone, ServerlessSpec | |
# Load the environment variables from the .env file | |
load_dotenv() | |
openai_api_key = os.getenv('OPENAI_API_KEY') | |
pinecone_api_key = os.getenv('PINECONE_API_KEY') | |
pinecone_environment = os.getenv('PINECONE_ENVIRONMENT') | |
# Initialize Pinecone | |
pc = Pinecone(api_key=pinecone_api_key) | |
# Streamlit app | |
st.title("Chat with Your Document") | |
st.write("Upload a PDF file to chat with its content using Pinecone and OpenAI.") | |
# File upload | |
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf") | |
if uploaded_file is not None: | |
# Load the PDF file | |
pdf_document = fitz.open(stream=uploaded_file.read(), filetype="pdf") | |
pdf_text = "" | |
for page_num in range(pdf_document.page_count): | |
page = pdf_document.load_page(page_num) | |
pdf_text += page.get_text() | |
# Initialize OpenAI embeddings | |
openai.api_key = openai_api_key | |
# Create a Pinecone vector store | |
index_name = "pdf-analysis" | |
if index_name not in pc.list_indexes().names(): | |
pc.create_index( | |
name=index_name, | |
dimension=512, | |
metric='euclidean', | |
spec=ServerlessSpec(cloud='aws', region=pinecone_environment) | |
) | |
vector_store = pc.Index(index_name) | |
# Add the PDF text to the vector store | |
vector_store.upsert([(str(i), openai.Embedding.create(input=pdf_text)["data"][0]["embedding"]) for i in range(len(pdf_text))]) | |
# Chat with the document | |
user_input = st.text_input("Ask a question about the document:") | |
if st.button("Ask"): | |
if user_input: | |
response = openai.Completion.create( | |
engine="davinci", | |
prompt=f"Analyze the following text and answer the question: {pdf_text}\n\nQuestion: {user_input}", | |
max_tokens=150 | |
) | |
st.write(response.choices[0].text.strip()) | |
else: | |
st.write("Please enter a question to ask.") | |
# Display the PDF text | |
st.write("Extracted Text from PDF:") | |
st.write(pdf_text) | |
# |