chatdoc / app.py
Waseem771's picture
Create app.py
fa23cf8 verified
import os
import logging
from dotenv import load_dotenv
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
# from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain_cohere import CohereEmbeddings
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
# from langchain.llms import Ollama
from langchain_groq import ChatGroq
# Load environment variables
load_dotenv()
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
# Function to extract text from PDF files
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
# Function to split the extracted text into chunks
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
# Function to create a FAISS vectorstore
# def get_vectorstore(text_chunks):
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
# vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
# return vectorstore
def get_vectorstore(text_chunks):
cohere_api_key = os.getenv("COHERE_API_KEY")
embeddings = CohereEmbeddings(model="embed-english-v3.0", cohere_api_key=cohere_api_key)
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
# Function to set up the conversational retrieval chain
def get_conversation_chain(vectorstore):
try:
# llm = Ollama(model="llama3.2:1b")
llm = ChatGroq(model="llama-3.3-70b-versatile", temperature=0.5)
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
logging.info("Conversation chain created successfully.")
return conversation_chain
except Exception as e:
logging.error(f"Error creating conversation chain: {e}")
st.error("An error occurred while setting up the conversation chain.")
# Handle user input
def handle_userinput(user_question):
if st.session_state.conversation is not None:
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(f"*User:* {message.content}")
else:
st.write(f"*Bot:* {message.content}")
else:
st.warning("Please process the documents first.")
# Main function to run the Streamlit app
def main():
load_dotenv()
st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat with multiple PDFs :books:")
user_question = st.text_input("Ask a question about your documents:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader(
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True
)
if st.button("Process"):
with st.spinner("Processing..."):
raw_text = get_pdf_text(pdf_docs)
text_chunks = get_text_chunks(raw_text)
vectorstore = get_vectorstore(text_chunks)
st.session_state.conversation = get_conversation_chain(vectorstore)
if __name__ == '__main__':
main()