Spaces:
Sleeping
Sleeping
"""Predefined R^n manifolds together with common coord. systems. | |
Coordinate systems are predefined as well as the transformation laws between | |
them. | |
Coordinate functions can be accessed as attributes of the manifold (eg `R2.x`), | |
as attributes of the coordinate systems (eg `R2_r.x` and `R2_p.theta`), or by | |
using the usual `coord_sys.coord_function(index, name)` interface. | |
""" | |
from typing import Any | |
import warnings | |
from sympy.core.symbol import (Dummy, symbols) | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.trigonometric import (acos, atan2, cos, sin) | |
from .diffgeom import Manifold, Patch, CoordSystem | |
__all__ = [ | |
'R2', 'R2_origin', 'relations_2d', 'R2_r', 'R2_p', | |
'R3', 'R3_origin', 'relations_3d', 'R3_r', 'R3_c', 'R3_s' | |
] | |
############################################################################### | |
# R2 | |
############################################################################### | |
R2: Any = Manifold('R^2', 2) | |
R2_origin: Any = Patch('origin', R2) | |
x, y = symbols('x y', real=True) | |
r, theta = symbols('rho theta', nonnegative=True) | |
relations_2d = { | |
('rectangular', 'polar'): [(x, y), (sqrt(x**2 + y**2), atan2(y, x))], | |
('polar', 'rectangular'): [(r, theta), (r*cos(theta), r*sin(theta))], | |
} | |
R2_r: Any = CoordSystem('rectangular', R2_origin, (x, y), relations_2d) | |
R2_p: Any = CoordSystem('polar', R2_origin, (r, theta), relations_2d) | |
# support deprecated feature | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") | |
x, y, r, theta = symbols('x y r theta', cls=Dummy) | |
R2_r.connect_to(R2_p, [x, y], | |
[sqrt(x**2 + y**2), atan2(y, x)], | |
inverse=False, fill_in_gaps=False) | |
R2_p.connect_to(R2_r, [r, theta], | |
[r*cos(theta), r*sin(theta)], | |
inverse=False, fill_in_gaps=False) | |
# Defining the basis coordinate functions and adding shortcuts for them to the | |
# manifold and the patch. | |
R2.x, R2.y = R2_origin.x, R2_origin.y = R2_r.x, R2_r.y = R2_r.coord_functions() | |
R2.r, R2.theta = R2_origin.r, R2_origin.theta = R2_p.r, R2_p.theta = R2_p.coord_functions() | |
# Defining the basis vector fields and adding shortcuts for them to the | |
# manifold and the patch. | |
R2.e_x, R2.e_y = R2_origin.e_x, R2_origin.e_y = R2_r.e_x, R2_r.e_y = R2_r.base_vectors() | |
R2.e_r, R2.e_theta = R2_origin.e_r, R2_origin.e_theta = R2_p.e_r, R2_p.e_theta = R2_p.base_vectors() | |
# Defining the basis oneform fields and adding shortcuts for them to the | |
# manifold and the patch. | |
R2.dx, R2.dy = R2_origin.dx, R2_origin.dy = R2_r.dx, R2_r.dy = R2_r.base_oneforms() | |
R2.dr, R2.dtheta = R2_origin.dr, R2_origin.dtheta = R2_p.dr, R2_p.dtheta = R2_p.base_oneforms() | |
############################################################################### | |
# R3 | |
############################################################################### | |
R3: Any = Manifold('R^3', 3) | |
R3_origin: Any = Patch('origin', R3) | |
x, y, z = symbols('x y z', real=True) | |
rho, psi, r, theta, phi = symbols('rho psi r theta phi', nonnegative=True) | |
relations_3d = { | |
('rectangular', 'cylindrical'): [(x, y, z), | |
(sqrt(x**2 + y**2), atan2(y, x), z)], | |
('cylindrical', 'rectangular'): [(rho, psi, z), | |
(rho*cos(psi), rho*sin(psi), z)], | |
('rectangular', 'spherical'): [(x, y, z), | |
(sqrt(x**2 + y**2 + z**2), | |
acos(z/sqrt(x**2 + y**2 + z**2)), | |
atan2(y, x))], | |
('spherical', 'rectangular'): [(r, theta, phi), | |
(r*sin(theta)*cos(phi), | |
r*sin(theta)*sin(phi), | |
r*cos(theta))], | |
('cylindrical', 'spherical'): [(rho, psi, z), | |
(sqrt(rho**2 + z**2), | |
acos(z/sqrt(rho**2 + z**2)), | |
psi)], | |
('spherical', 'cylindrical'): [(r, theta, phi), | |
(r*sin(theta), phi, r*cos(theta))], | |
} | |
R3_r: Any = CoordSystem('rectangular', R3_origin, (x, y, z), relations_3d) | |
R3_c: Any = CoordSystem('cylindrical', R3_origin, (rho, psi, z), relations_3d) | |
R3_s: Any = CoordSystem('spherical', R3_origin, (r, theta, phi), relations_3d) | |
# support deprecated feature | |
with warnings.catch_warnings(): | |
warnings.simplefilter("ignore") | |
x, y, z, rho, psi, r, theta, phi = symbols('x y z rho psi r theta phi', cls=Dummy) | |
R3_r.connect_to(R3_c, [x, y, z], | |
[sqrt(x**2 + y**2), atan2(y, x), z], | |
inverse=False, fill_in_gaps=False) | |
R3_c.connect_to(R3_r, [rho, psi, z], | |
[rho*cos(psi), rho*sin(psi), z], | |
inverse=False, fill_in_gaps=False) | |
## rectangular <-> spherical | |
R3_r.connect_to(R3_s, [x, y, z], | |
[sqrt(x**2 + y**2 + z**2), acos(z/ | |
sqrt(x**2 + y**2 + z**2)), atan2(y, x)], | |
inverse=False, fill_in_gaps=False) | |
R3_s.connect_to(R3_r, [r, theta, phi], | |
[r*sin(theta)*cos(phi), r*sin( | |
theta)*sin(phi), r*cos(theta)], | |
inverse=False, fill_in_gaps=False) | |
## cylindrical <-> spherical | |
R3_c.connect_to(R3_s, [rho, psi, z], | |
[sqrt(rho**2 + z**2), acos(z/sqrt(rho**2 + z**2)), psi], | |
inverse=False, fill_in_gaps=False) | |
R3_s.connect_to(R3_c, [r, theta, phi], | |
[r*sin(theta), phi, r*cos(theta)], | |
inverse=False, fill_in_gaps=False) | |
# Defining the basis coordinate functions. | |
R3_r.x, R3_r.y, R3_r.z = R3_r.coord_functions() | |
R3_c.rho, R3_c.psi, R3_c.z = R3_c.coord_functions() | |
R3_s.r, R3_s.theta, R3_s.phi = R3_s.coord_functions() | |
# Defining the basis vector fields. | |
R3_r.e_x, R3_r.e_y, R3_r.e_z = R3_r.base_vectors() | |
R3_c.e_rho, R3_c.e_psi, R3_c.e_z = R3_c.base_vectors() | |
R3_s.e_r, R3_s.e_theta, R3_s.e_phi = R3_s.base_vectors() | |
# Defining the basis oneform fields. | |
R3_r.dx, R3_r.dy, R3_r.dz = R3_r.base_oneforms() | |
R3_c.drho, R3_c.dpsi, R3_c.dz = R3_c.base_oneforms() | |
R3_s.dr, R3_s.dtheta, R3_s.dphi = R3_s.base_oneforms() | |