Spaces:
Sleeping
Sleeping
from sympy.core import S, oo, diff | |
from sympy.core.function import Function, ArgumentIndexError | |
from sympy.core.logic import fuzzy_not | |
from sympy.core.relational import Eq | |
from sympy.functions.elementary.complexes import im | |
from sympy.functions.elementary.piecewise import Piecewise | |
from sympy.functions.special.delta_functions import Heaviside | |
############################################################################### | |
############################# SINGULARITY FUNCTION ############################ | |
############################################################################### | |
class SingularityFunction(Function): | |
r""" | |
Singularity functions are a class of discontinuous functions. | |
Explanation | |
=========== | |
Singularity functions take a variable, an offset, and an exponent as | |
arguments. These functions are represented using Macaulay brackets as: | |
SingularityFunction(x, a, n) := <x - a>^n | |
The singularity function will automatically evaluate to | |
``Derivative(DiracDelta(x - a), x, -n - 1)`` if ``n < 0`` | |
and ``(x - a)**n*Heaviside(x - a, 1)`` if ``n >= 0``. | |
Examples | |
======== | |
>>> from sympy import SingularityFunction, diff, Piecewise, DiracDelta, Heaviside, Symbol | |
>>> from sympy.abc import x, a, n | |
>>> SingularityFunction(x, a, n) | |
SingularityFunction(x, a, n) | |
>>> y = Symbol('y', positive=True) | |
>>> n = Symbol('n', nonnegative=True) | |
>>> SingularityFunction(y, -10, n) | |
(y + 10)**n | |
>>> y = Symbol('y', negative=True) | |
>>> SingularityFunction(y, 10, n) | |
0 | |
>>> SingularityFunction(x, 4, -1).subs(x, 4) | |
oo | |
>>> SingularityFunction(x, 10, -2).subs(x, 10) | |
oo | |
>>> SingularityFunction(4, 1, 5) | |
243 | |
>>> diff(SingularityFunction(x, 1, 5) + SingularityFunction(x, 1, 4), x) | |
4*SingularityFunction(x, 1, 3) + 5*SingularityFunction(x, 1, 4) | |
>>> diff(SingularityFunction(x, 4, 0), x, 2) | |
SingularityFunction(x, 4, -2) | |
>>> SingularityFunction(x, 4, 5).rewrite(Piecewise) | |
Piecewise(((x - 4)**5, x >= 4), (0, True)) | |
>>> expr = SingularityFunction(x, a, n) | |
>>> y = Symbol('y', positive=True) | |
>>> n = Symbol('n', nonnegative=True) | |
>>> expr.subs({x: y, a: -10, n: n}) | |
(y + 10)**n | |
The methods ``rewrite(DiracDelta)``, ``rewrite(Heaviside)``, and | |
``rewrite('HeavisideDiracDelta')`` returns the same output. One can use any | |
of these methods according to their choice. | |
>>> expr = SingularityFunction(x, 4, 5) + SingularityFunction(x, -3, -1) - SingularityFunction(x, 0, -2) | |
>>> expr.rewrite(Heaviside) | |
(x - 4)**5*Heaviside(x - 4, 1) + DiracDelta(x + 3) - DiracDelta(x, 1) | |
>>> expr.rewrite(DiracDelta) | |
(x - 4)**5*Heaviside(x - 4, 1) + DiracDelta(x + 3) - DiracDelta(x, 1) | |
>>> expr.rewrite('HeavisideDiracDelta') | |
(x - 4)**5*Heaviside(x - 4, 1) + DiracDelta(x + 3) - DiracDelta(x, 1) | |
See Also | |
======== | |
DiracDelta, Heaviside | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Singularity_function | |
""" | |
is_real = True | |
def fdiff(self, argindex=1): | |
""" | |
Returns the first derivative of a DiracDelta Function. | |
Explanation | |
=========== | |
The difference between ``diff()`` and ``fdiff()`` is: ``diff()`` is the | |
user-level function and ``fdiff()`` is an object method. ``fdiff()`` is | |
a convenience method available in the ``Function`` class. It returns | |
the derivative of the function without considering the chain rule. | |
``diff(function, x)`` calls ``Function._eval_derivative`` which in turn | |
calls ``fdiff()`` internally to compute the derivative of the function. | |
""" | |
if argindex == 1: | |
x, a, n = self.args | |
if n in (S.Zero, S.NegativeOne, S(-2), S(-3)): | |
return self.func(x, a, n-1) | |
elif n.is_positive: | |
return n*self.func(x, a, n-1) | |
else: | |
raise ArgumentIndexError(self, argindex) | |
def eval(cls, variable, offset, exponent): | |
""" | |
Returns a simplified form or a value of Singularity Function depending | |
on the argument passed by the object. | |
Explanation | |
=========== | |
The ``eval()`` method is automatically called when the | |
``SingularityFunction`` class is about to be instantiated and it | |
returns either some simplified instance or the unevaluated instance | |
depending on the argument passed. In other words, ``eval()`` method is | |
not needed to be called explicitly, it is being called and evaluated | |
once the object is called. | |
Examples | |
======== | |
>>> from sympy import SingularityFunction, Symbol, nan | |
>>> from sympy.abc import x, a, n | |
>>> SingularityFunction(x, a, n) | |
SingularityFunction(x, a, n) | |
>>> SingularityFunction(5, 3, 2) | |
4 | |
>>> SingularityFunction(x, a, nan) | |
nan | |
>>> SingularityFunction(x, 3, 0).subs(x, 3) | |
1 | |
>>> SingularityFunction(4, 1, 5) | |
243 | |
>>> x = Symbol('x', positive = True) | |
>>> a = Symbol('a', negative = True) | |
>>> n = Symbol('n', nonnegative = True) | |
>>> SingularityFunction(x, a, n) | |
(-a + x)**n | |
>>> x = Symbol('x', negative = True) | |
>>> a = Symbol('a', positive = True) | |
>>> SingularityFunction(x, a, n) | |
0 | |
""" | |
x = variable | |
a = offset | |
n = exponent | |
shift = (x - a) | |
if fuzzy_not(im(shift).is_zero): | |
raise ValueError("Singularity Functions are defined only for Real Numbers.") | |
if fuzzy_not(im(n).is_zero): | |
raise ValueError("Singularity Functions are not defined for imaginary exponents.") | |
if shift is S.NaN or n is S.NaN: | |
return S.NaN | |
if (n + 4).is_negative: | |
raise ValueError("Singularity Functions are not defined for exponents less than -4.") | |
if shift.is_extended_negative: | |
return S.Zero | |
if n.is_nonnegative: | |
if shift.is_zero: # use literal 0 in case of Symbol('z', zero=True) | |
return S.Zero**n | |
if shift.is_extended_nonnegative: | |
return shift**n | |
if n in (S.NegativeOne, -2, -3, -4): | |
if shift.is_negative or shift.is_extended_positive: | |
return S.Zero | |
if shift.is_zero: | |
return oo | |
def _eval_rewrite_as_Piecewise(self, *args, **kwargs): | |
''' | |
Converts a Singularity Function expression into its Piecewise form. | |
''' | |
x, a, n = self.args | |
if n in (S.NegativeOne, S(-2), S(-3), S(-4)): | |
return Piecewise((oo, Eq(x - a, 0)), (0, True)) | |
elif n.is_nonnegative: | |
return Piecewise(((x - a)**n, x - a >= 0), (0, True)) | |
def _eval_rewrite_as_Heaviside(self, *args, **kwargs): | |
''' | |
Rewrites a Singularity Function expression using Heavisides and DiracDeltas. | |
''' | |
x, a, n = self.args | |
if n == -4: | |
return diff(Heaviside(x - a), x.free_symbols.pop(), 4) | |
if n == -3: | |
return diff(Heaviside(x - a), x.free_symbols.pop(), 3) | |
if n == -2: | |
return diff(Heaviside(x - a), x.free_symbols.pop(), 2) | |
if n == -1: | |
return diff(Heaviside(x - a), x.free_symbols.pop(), 1) | |
if n.is_nonnegative: | |
return (x - a)**n*Heaviside(x - a, 1) | |
def _eval_as_leading_term(self, x, logx=None, cdir=0): | |
z, a, n = self.args | |
shift = (z - a).subs(x, 0) | |
if n < 0: | |
return S.Zero | |
elif n.is_zero and shift.is_zero: | |
return S.Zero if cdir == -1 else S.One | |
elif shift.is_positive: | |
return shift**n | |
return S.Zero | |
def _eval_nseries(self, x, n, logx=None, cdir=0): | |
z, a, n = self.args | |
shift = (z - a).subs(x, 0) | |
if n < 0: | |
return S.Zero | |
elif n.is_zero and shift.is_zero: | |
return S.Zero if cdir == -1 else S.One | |
elif shift.is_positive: | |
return ((z - a)**n)._eval_nseries(x, n, logx=logx, cdir=cdir) | |
return S.Zero | |
_eval_rewrite_as_DiracDelta = _eval_rewrite_as_Heaviside | |
_eval_rewrite_as_HeavisideDiracDelta = _eval_rewrite_as_Heaviside | |