Spaces:
Sleeping
Sleeping
from sympy.concrete.summations import Sum | |
from sympy.core.add import Add | |
from sympy.core.function import (Derivative, Function, diff) | |
from sympy.core.numbers import (I, Rational, pi) | |
from sympy.core.relational import Eq, Ne | |
from sympy.core.symbol import (Symbol, symbols) | |
from sympy.functions.elementary.exponential import (LambertW, exp, log) | |
from sympy.functions.elementary.hyperbolic import (asinh, cosh, sinh, tanh) | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.piecewise import Piecewise | |
from sympy.functions.elementary.trigonometric import (acos, asin, atan, cos, sin, tan) | |
from sympy.functions.special.bessel import (besselj, besselk, bessely, jn) | |
from sympy.functions.special.error_functions import erf | |
from sympy.integrals.integrals import Integral | |
from sympy.logic.boolalg import And | |
from sympy.matrices import Matrix | |
from sympy.simplify.ratsimp import ratsimp | |
from sympy.simplify.simplify import simplify | |
from sympy.integrals.heurisch import components, heurisch, heurisch_wrapper | |
from sympy.testing.pytest import XFAIL, slow | |
from sympy.integrals.integrals import integrate | |
x, y, z, nu = symbols('x,y,z,nu') | |
f = Function('f') | |
def test_components(): | |
assert components(x*y, x) == {x} | |
assert components(1/(x + y), x) == {x} | |
assert components(sin(x), x) == {sin(x), x} | |
assert components(sin(x)*sqrt(log(x)), x) == \ | |
{log(x), sin(x), sqrt(log(x)), x} | |
assert components(x*sin(exp(x)*y), x) == \ | |
{sin(y*exp(x)), x, exp(x)} | |
assert components(x**Rational(17, 54)/sqrt(sin(x)), x) == \ | |
{sin(x), x**Rational(1, 54), sqrt(sin(x)), x} | |
assert components(f(x), x) == \ | |
{x, f(x)} | |
assert components(Derivative(f(x), x), x) == \ | |
{x, f(x), Derivative(f(x), x)} | |
assert components(f(x)*diff(f(x), x), x) == \ | |
{x, f(x), Derivative(f(x), x), Derivative(f(x), x)} | |
def test_issue_10680(): | |
assert isinstance(integrate(x**log(x**log(x**log(x))),x), Integral) | |
def test_issue_21166(): | |
assert integrate(sin(x/sqrt(abs(x))), (x, -1, 1)) == 0 | |
def test_heurisch_polynomials(): | |
assert heurisch(1, x) == x | |
assert heurisch(x, x) == x**2/2 | |
assert heurisch(x**17, x) == x**18/18 | |
# For coverage | |
assert heurisch_wrapper(y, x) == y*x | |
def test_heurisch_fractions(): | |
assert heurisch(1/x, x) == log(x) | |
assert heurisch(1/(2 + x), x) == log(x + 2) | |
assert heurisch(1/(x + sin(y)), x) == log(x + sin(y)) | |
# Up to a constant, where C = pi*I*Rational(5, 12), Mathematica gives identical | |
# result in the first case. The difference is because SymPy changes | |
# signs of expressions without any care. | |
# XXX ^ ^ ^ is this still correct? | |
assert heurisch(5*x**5/( | |
2*x**6 - 5), x) in [5*log(2*x**6 - 5) / 12, 5*log(-2*x**6 + 5) / 12] | |
assert heurisch(5*x**5/(2*x**6 + 5), x) == 5*log(2*x**6 + 5) / 12 | |
assert heurisch(1/x**2, x) == -1/x | |
assert heurisch(-1/x**5, x) == 1/(4*x**4) | |
def test_heurisch_log(): | |
assert heurisch(log(x), x) == x*log(x) - x | |
assert heurisch(log(3*x), x) == -x + x*log(3) + x*log(x) | |
assert heurisch(log(x**2), x) in [x*log(x**2) - 2*x, 2*x*log(x) - 2*x] | |
def test_heurisch_exp(): | |
assert heurisch(exp(x), x) == exp(x) | |
assert heurisch(exp(-x), x) == -exp(-x) | |
assert heurisch(exp(17*x), x) == exp(17*x) / 17 | |
assert heurisch(x*exp(x), x) == x*exp(x) - exp(x) | |
assert heurisch(x*exp(x**2), x) == exp(x**2) / 2 | |
assert heurisch(exp(-x**2), x) is None | |
assert heurisch(2**x, x) == 2**x/log(2) | |
assert heurisch(x*2**x, x) == x*2**x/log(2) - 2**x*log(2)**(-2) | |
assert heurisch(Integral(x**z*y, (y, 1, 2), (z, 2, 3)).function, x) == (x*x**z*y)/(z+1) | |
assert heurisch(Sum(x**z, (z, 1, 2)).function, z) == x**z/log(x) | |
# https://github.com/sympy/sympy/issues/23707 | |
anti = -exp(z)/(sqrt(x - y)*exp(z*sqrt(x - y)) - exp(z*sqrt(x - y))) | |
assert heurisch(exp(z)*exp(-z*sqrt(x - y)), z) == anti | |
def test_heurisch_trigonometric(): | |
assert heurisch(sin(x), x) == -cos(x) | |
assert heurisch(pi*sin(x) + 1, x) == x - pi*cos(x) | |
assert heurisch(cos(x), x) == sin(x) | |
assert heurisch(tan(x), x) in [ | |
log(1 + tan(x)**2)/2, | |
log(tan(x) + I) + I*x, | |
log(tan(x) - I) - I*x, | |
] | |
assert heurisch(sin(x)*sin(y), x) == -cos(x)*sin(y) | |
assert heurisch(sin(x)*sin(y), y) == -cos(y)*sin(x) | |
# gives sin(x) in answer when run via setup.py and cos(x) when run via py.test | |
assert heurisch(sin(x)*cos(x), x) in [sin(x)**2 / 2, -cos(x)**2 / 2] | |
assert heurisch(cos(x)/sin(x), x) == log(sin(x)) | |
assert heurisch(x*sin(7*x), x) == sin(7*x) / 49 - x*cos(7*x) / 7 | |
assert heurisch(1/pi/4 * x**2*cos(x), x) == 1/pi/4*(x**2*sin(x) - | |
2*sin(x) + 2*x*cos(x)) | |
assert heurisch(acos(x/4) * asin(x/4), x) == 2*x - (sqrt(16 - x**2))*asin(x/4) \ | |
+ (sqrt(16 - x**2))*acos(x/4) + x*asin(x/4)*acos(x/4) | |
assert heurisch(sin(x)/(cos(x)**2+1), x) == -atan(cos(x)) #fixes issue 13723 | |
assert heurisch(1/(cos(x)+2), x) == 2*sqrt(3)*atan(sqrt(3)*tan(x/2)/3)/3 | |
assert heurisch(2*sin(x)*cos(x)/(sin(x)**4 + 1), x) == atan(sqrt(2)*sin(x) | |
- 1) - atan(sqrt(2)*sin(x) + 1) | |
assert heurisch(1/cosh(x), x) == 2*atan(tanh(x/2)) | |
def test_heurisch_hyperbolic(): | |
assert heurisch(sinh(x), x) == cosh(x) | |
assert heurisch(cosh(x), x) == sinh(x) | |
assert heurisch(x*sinh(x), x) == x*cosh(x) - sinh(x) | |
assert heurisch(x*cosh(x), x) == x*sinh(x) - cosh(x) | |
assert heurisch( | |
x*asinh(x/2), x) == x**2*asinh(x/2)/2 + asinh(x/2) - x*sqrt(4 + x**2)/4 | |
def test_heurisch_mixed(): | |
assert heurisch(sin(x)*exp(x), x) == exp(x)*sin(x)/2 - exp(x)*cos(x)/2 | |
assert heurisch(sin(x/sqrt(-x)), x) == 2*x*cos(x/sqrt(-x))/sqrt(-x) - 2*sin(x/sqrt(-x)) | |
def test_heurisch_radicals(): | |
assert heurisch(1/sqrt(x), x) == 2*sqrt(x) | |
assert heurisch(1/sqrt(x)**3, x) == -2/sqrt(x) | |
assert heurisch(sqrt(x)**3, x) == 2*sqrt(x)**5/5 | |
assert heurisch(sin(x)*sqrt(cos(x)), x) == -2*sqrt(cos(x))**3/3 | |
y = Symbol('y') | |
assert heurisch(sin(y*sqrt(x)), x) == 2/y**2*sin(y*sqrt(x)) - \ | |
2*sqrt(x)*cos(y*sqrt(x))/y | |
assert heurisch_wrapper(sin(y*sqrt(x)), x) == Piecewise( | |
(-2*sqrt(x)*cos(sqrt(x)*y)/y + 2*sin(sqrt(x)*y)/y**2, Ne(y, 0)), | |
(0, True)) | |
y = Symbol('y', positive=True) | |
assert heurisch_wrapper(sin(y*sqrt(x)), x) == 2/y**2*sin(y*sqrt(x)) - \ | |
2*sqrt(x)*cos(y*sqrt(x))/y | |
def test_heurisch_special(): | |
assert heurisch(erf(x), x) == x*erf(x) + exp(-x**2)/sqrt(pi) | |
assert heurisch(exp(-x**2)*erf(x), x) == sqrt(pi)*erf(x)**2 / 4 | |
def test_heurisch_symbolic_coeffs(): | |
assert heurisch(1/(x + y), x) == log(x + y) | |
assert heurisch(1/(x + sqrt(2)), x) == log(x + sqrt(2)) | |
assert simplify(diff(heurisch(log(x + y + z), y), y)) == log(x + y + z) | |
def test_heurisch_symbolic_coeffs_1130(): | |
y = Symbol('y') | |
assert heurisch_wrapper(1/(x**2 + y), x) == Piecewise( | |
(log(x - sqrt(-y))/(2*sqrt(-y)) - log(x + sqrt(-y))/(2*sqrt(-y)), | |
Ne(y, 0)), (-1/x, True)) | |
y = Symbol('y', positive=True) | |
assert heurisch_wrapper(1/(x**2 + y), x) == (atan(x/sqrt(y))/sqrt(y)) | |
def test_heurisch_hacking(): | |
assert heurisch(sqrt(1 + 7*x**2), x, hints=[]) == \ | |
x*sqrt(1 + 7*x**2)/2 + sqrt(7)*asinh(sqrt(7)*x)/14 | |
assert heurisch(sqrt(1 - 7*x**2), x, hints=[]) == \ | |
x*sqrt(1 - 7*x**2)/2 + sqrt(7)*asin(sqrt(7)*x)/14 | |
assert heurisch(1/sqrt(1 + 7*x**2), x, hints=[]) == \ | |
sqrt(7)*asinh(sqrt(7)*x)/7 | |
assert heurisch(1/sqrt(1 - 7*x**2), x, hints=[]) == \ | |
sqrt(7)*asin(sqrt(7)*x)/7 | |
assert heurisch(exp(-7*x**2), x, hints=[]) == \ | |
sqrt(7*pi)*erf(sqrt(7)*x)/14 | |
assert heurisch(1/sqrt(9 - 4*x**2), x, hints=[]) == \ | |
asin(x*Rational(2, 3))/2 | |
assert heurisch(1/sqrt(9 + 4*x**2), x, hints=[]) == \ | |
asinh(x*Rational(2, 3))/2 | |
assert heurisch(1/sqrt(3*x**2-4), x, hints=[]) == \ | |
sqrt(3)*log(3*x + sqrt(3)*sqrt(3*x**2 - 4))/3 | |
def test_heurisch_function(): | |
assert heurisch(f(x), x) is None | |
def test_heurisch_function_derivative(): | |
# TODO: it looks like this used to work just by coincindence and | |
# thanks to sloppy implementation. Investigate why this used to | |
# work at all and if support for this can be restored. | |
df = diff(f(x), x) | |
assert heurisch(f(x)*df, x) == f(x)**2/2 | |
assert heurisch(f(x)**2*df, x) == f(x)**3/3 | |
assert heurisch(df/f(x), x) == log(f(x)) | |
def test_heurisch_wrapper(): | |
f = 1/(y + x) | |
assert heurisch_wrapper(f, x) == log(x + y) | |
f = 1/(y - x) | |
assert heurisch_wrapper(f, x) == -log(x - y) | |
f = 1/((y - x)*(y + x)) | |
assert heurisch_wrapper(f, x) == Piecewise( | |
(-log(x - y)/(2*y) + log(x + y)/(2*y), Ne(y, 0)), (1/x, True)) | |
# issue 6926 | |
f = sqrt(x**2/((y - x)*(y + x))) | |
assert heurisch_wrapper(f, x) == x*sqrt(-x**2/(x**2 - y**2)) \ | |
- y**2*sqrt(-x**2/(x**2 - y**2))/x | |
def test_issue_3609(): | |
assert heurisch(1/(x * (1 + log(x)**2)), x) == atan(log(x)) | |
### These are examples from the Poor Man's Integrator | |
### http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/examples/ | |
def test_pmint_rat(): | |
# TODO: heurisch() is off by a constant: -3/4. Possibly different permutation | |
# would give the optimal result? | |
def drop_const(expr, x): | |
if expr.is_Add: | |
return Add(*[ arg for arg in expr.args if arg.has(x) ]) | |
else: | |
return expr | |
f = (x**7 - 24*x**4 - 4*x**2 + 8*x - 8)/(x**8 + 6*x**6 + 12*x**4 + 8*x**2) | |
g = (4 + 8*x**2 + 6*x + 3*x**3)/(x**5 + 4*x**3 + 4*x) + log(x) | |
assert drop_const(ratsimp(heurisch(f, x)), x) == g | |
def test_pmint_trig(): | |
f = (x - tan(x)) / tan(x)**2 + tan(x) | |
g = -x**2/2 - x/tan(x) + log(tan(x)**2 + 1)/2 | |
assert heurisch(f, x) == g | |
def test_pmint_logexp(): | |
f = (1 + x + x*exp(x))*(x + log(x) + exp(x) - 1)/(x + log(x) + exp(x))**2/x | |
g = log(x + exp(x) + log(x)) + 1/(x + exp(x) + log(x)) | |
assert ratsimp(heurisch(f, x)) == g | |
def test_pmint_erf(): | |
f = exp(-x**2)*erf(x)/(erf(x)**3 - erf(x)**2 - erf(x) + 1) | |
g = sqrt(pi)*log(erf(x) - 1)/8 - sqrt(pi)*log(erf(x) + 1)/8 - sqrt(pi)/(4*erf(x) - 4) | |
assert ratsimp(heurisch(f, x)) == g | |
def test_pmint_LambertW(): | |
f = LambertW(x) | |
g = x*LambertW(x) - x + x/LambertW(x) | |
assert heurisch(f, x) == g | |
def test_pmint_besselj(): | |
f = besselj(nu + 1, x)/besselj(nu, x) | |
g = nu*log(x) - log(besselj(nu, x)) | |
assert heurisch(f, x) == g | |
f = (nu*besselj(nu, x) - x*besselj(nu + 1, x))/x | |
g = besselj(nu, x) | |
assert heurisch(f, x) == g | |
f = jn(nu + 1, x)/jn(nu, x) | |
g = nu*log(x) - log(jn(nu, x)) | |
assert heurisch(f, x) == g | |
def test_pmint_bessel_products(): | |
f = x*besselj(nu, x)*bessely(nu, 2*x) | |
g = -2*x*besselj(nu, x)*bessely(nu - 1, 2*x)/3 + x*besselj(nu - 1, x)*bessely(nu, 2*x)/3 | |
assert heurisch(f, x) == g | |
f = x*besselj(nu, x)*besselk(nu, 2*x) | |
g = -2*x*besselj(nu, x)*besselk(nu - 1, 2*x)/5 - x*besselj(nu - 1, x)*besselk(nu, 2*x)/5 | |
assert heurisch(f, x) == g | |
def test_pmint_WrightOmega(): | |
def omega(x): | |
return LambertW(exp(x)) | |
f = (1 + omega(x) * (2 + cos(omega(x)) * (x + omega(x))))/(1 + omega(x))/(x + omega(x)) | |
g = log(x + LambertW(exp(x))) + sin(LambertW(exp(x))) | |
assert heurisch(f, x) == g | |
def test_RR(): | |
# Make sure the algorithm does the right thing if the ring is RR. See | |
# issue 8685. | |
assert heurisch(sqrt(1 + 0.25*x**2), x, hints=[]) == \ | |
0.5*x*sqrt(0.25*x**2 + 1) + 1.0*asinh(0.5*x) | |
# TODO: convert the rest of PMINT tests: | |
# Airy functions | |
# f = (x - AiryAi(x)*AiryAi(1, x)) / (x**2 - AiryAi(x)**2) | |
# g = Rational(1,2)*ln(x + AiryAi(x)) + Rational(1,2)*ln(x - AiryAi(x)) | |
# f = x**2 * AiryAi(x) | |
# g = -AiryAi(x) + AiryAi(1, x)*x | |
# Whittaker functions | |
# f = WhittakerW(mu + 1, nu, x) / (WhittakerW(mu, nu, x) * x) | |
# g = x/2 - mu*ln(x) - ln(WhittakerW(mu, nu, x)) | |
def test_issue_22527(): | |
t, R = symbols(r't R') | |
z = Function('z')(t) | |
def f(x): | |
return x/sqrt(R**2 - x**2) | |
Uz = integrate(f(z), z) | |
Ut = integrate(f(t), t) | |
assert Ut == Uz.subs(z, t) | |
def test_heurisch_complex_erf_issue_26338(): | |
r = symbols('r', real=True) | |
a = exp(-r**2/(2*(2 - I)**2)) | |
assert heurisch(a, r, hints=[]) is None # None, not a wrong soln | |
a = sqrt(pi)*erf((1 + I)/2)/2 | |
assert integrate(exp(-I*r**2/2), (r, 0, 1)) == a - I*a | |
a = exp(-x**2/(2*(2 - I)**2)) | |
assert heurisch(a, x, hints=[]) is None # None, not a wrong soln | |
a = sqrt(pi)*erf((1 + I)/2)/2 | |
assert integrate(exp(-I*x**2/2), (x, 0, 1)) == a - I*a | |
def test_issue_15498(): | |
Z0 = Function('Z0') | |
k01, k10, t, s= symbols('k01 k10 t s', real=True, positive=True) | |
m = Matrix([[exp(-k10*t)]]) | |
_83 = Rational(83, 100) # 0.83 works, too | |
[a, b, c, d, e, f, g] = [100, 0.5, _83, 50, 0.6, 2, 120] | |
AIF_btf = a*(d*e*(1 - exp(-(t - b)/e)) + f*g*(1 - exp(-(t - b)/g))) | |
AIF_atf = a*(d*e*exp(-(t - b)/e)*(exp((c - b)/e) - 1 | |
) + f*g*exp(-(t - b)/g)*(exp((c - b)/g) - 1)) | |
AIF_sym = Piecewise((0, t < b), (AIF_btf, And(b <= t, t < c)), (AIF_atf, c <= t)) | |
aif_eq = Eq(Z0(t), AIF_sym) | |
f_vec = Matrix([[k01*Z0(t)]]) | |
integrand = m*m.subs(t, s)**-1*f_vec.subs(aif_eq.lhs, aif_eq.rhs).subs(t, s) | |
solution = integrate(integrand[0], (s, 0, t)) | |
assert solution is not None # does not hang and takes less than 10 s | |