Spaces:
Sleeping
Sleeping
from sympy.core.function import expand_func | |
from sympy.core.numbers import (I, Rational, oo, pi) | |
from sympy.core.singleton import S | |
from sympy.core.sorting import default_sort_key | |
from sympy.functions.elementary.complexes import Abs, arg, re, unpolarify | |
from sympy.functions.elementary.exponential import (exp, exp_polar, log) | |
from sympy.functions.elementary.hyperbolic import cosh, acosh, sinh | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold | |
from sympy.functions.elementary.trigonometric import (cos, sin, sinc, asin) | |
from sympy.functions.special.error_functions import (erf, erfc) | |
from sympy.functions.special.gamma_functions import (gamma, polygamma) | |
from sympy.functions.special.hyper import (hyper, meijerg) | |
from sympy.integrals.integrals import (Integral, integrate) | |
from sympy.simplify.hyperexpand import hyperexpand | |
from sympy.simplify.simplify import simplify | |
from sympy.integrals.meijerint import (_rewrite_single, _rewrite1, | |
meijerint_indefinite, _inflate_g, _create_lookup_table, | |
meijerint_definite, meijerint_inversion) | |
from sympy.testing.pytest import slow | |
from sympy.core.random import (verify_numerically, | |
random_complex_number as randcplx) | |
from sympy.abc import x, y, a, b, c, d, s, t, z | |
def test_rewrite_single(): | |
def t(expr, c, m): | |
e = _rewrite_single(meijerg([a], [b], [c], [d], expr), x) | |
assert e is not None | |
assert isinstance(e[0][0][2], meijerg) | |
assert e[0][0][2].argument.as_coeff_mul(x) == (c, (m,)) | |
def tn(expr): | |
assert _rewrite_single(meijerg([a], [b], [c], [d], expr), x) is None | |
t(x, 1, x) | |
t(x**2, 1, x**2) | |
t(x**2 + y*x**2, y + 1, x**2) | |
tn(x**2 + x) | |
tn(x**y) | |
def u(expr, x): | |
from sympy.core.add import Add | |
r = _rewrite_single(expr, x) | |
e = Add(*[res[0]*res[2] for res in r[0]]).replace( | |
exp_polar, exp) # XXX Hack? | |
assert verify_numerically(e, expr, x) | |
u(exp(-x)*sin(x), x) | |
# The following has stopped working because hyperexpand changed slightly. | |
# It is probably not worth fixing | |
#u(exp(-x)*sin(x)*cos(x), x) | |
# This one cannot be done numerically, since it comes out as a g-function | |
# of argument 4*pi | |
# NOTE This also tests a bug in inverse mellin transform (which used to | |
# turn exp(4*pi*I*t) into a factor of exp(4*pi*I)**t instead of | |
# exp_polar). | |
#u(exp(x)*sin(x), x) | |
assert _rewrite_single(exp(x)*sin(x), x) == \ | |
([(-sqrt(2)/(2*sqrt(pi)), 0, | |
meijerg(((Rational(-1, 2), 0, Rational(1, 4), S.Half, Rational(3, 4)), (1,)), | |
((), (Rational(-1, 2), 0)), 64*exp_polar(-4*I*pi)/x**4))], True) | |
def test_rewrite1(): | |
assert _rewrite1(x**3*meijerg([a], [b], [c], [d], x**2 + y*x**2)*5, x) == \ | |
(5, x**3, [(1, 0, meijerg([a], [b], [c], [d], x**2*(y + 1)))], True) | |
def test_meijerint_indefinite_numerically(): | |
def t(fac, arg): | |
g = meijerg([a], [b], [c], [d], arg)*fac | |
subs = {a: randcplx()/10, b: randcplx()/10 + I, | |
c: randcplx(), d: randcplx()} | |
integral = meijerint_indefinite(g, x) | |
assert integral is not None | |
assert verify_numerically(g.subs(subs), integral.diff(x).subs(subs), x) | |
t(1, x) | |
t(2, x) | |
t(1, 2*x) | |
t(1, x**2) | |
t(5, x**S('3/2')) | |
t(x**3, x) | |
t(3*x**S('3/2'), 4*x**S('7/3')) | |
def test_meijerint_definite(): | |
v, b = meijerint_definite(x, x, 0, 0) | |
assert v.is_zero and b is True | |
v, b = meijerint_definite(x, x, oo, oo) | |
assert v.is_zero and b is True | |
def test_inflate(): | |
subs = {a: randcplx()/10, b: randcplx()/10 + I, c: randcplx(), | |
d: randcplx(), y: randcplx()/10} | |
def t(a, b, arg, n): | |
from sympy.core.mul import Mul | |
m1 = meijerg(a, b, arg) | |
m2 = Mul(*_inflate_g(m1, n)) | |
# NOTE: (the random number)**9 must still be on the principal sheet. | |
# Thus make b&d small to create random numbers of small imaginary part. | |
return verify_numerically(m1.subs(subs), m2.subs(subs), x, b=0.1, d=-0.1) | |
assert t([[a], [b]], [[c], [d]], x, 3) | |
assert t([[a, y], [b]], [[c], [d]], x, 3) | |
assert t([[a], [b]], [[c, y], [d]], 2*x**3, 3) | |
def test_recursive(): | |
from sympy.core.symbol import symbols | |
a, b, c = symbols('a b c', positive=True) | |
r = exp(-(x - a)**2)*exp(-(x - b)**2) | |
e = integrate(r, (x, 0, oo), meijerg=True) | |
assert simplify(e.expand()) == ( | |
sqrt(2)*sqrt(pi)*( | |
(erf(sqrt(2)*(a + b)/2) + 1)*exp(-a**2/2 + a*b - b**2/2))/4) | |
e = integrate(exp(-(x - a)**2)*exp(-(x - b)**2)*exp(c*x), (x, 0, oo), meijerg=True) | |
assert simplify(e) == ( | |
sqrt(2)*sqrt(pi)*(erf(sqrt(2)*(2*a + 2*b + c)/4) + 1)*exp(-a**2 - b**2 | |
+ (2*a + 2*b + c)**2/8)/4) | |
assert simplify(integrate(exp(-(x - a - b - c)**2), (x, 0, oo), meijerg=True)) == \ | |
sqrt(pi)/2*(1 + erf(a + b + c)) | |
assert simplify(integrate(exp(-(x + a + b + c)**2), (x, 0, oo), meijerg=True)) == \ | |
sqrt(pi)/2*(1 - erf(a + b + c)) | |
def test_meijerint(): | |
from sympy.core.function import expand | |
from sympy.core.symbol import symbols | |
s, t, mu = symbols('s t mu', real=True) | |
assert integrate(meijerg([], [], [0], [], s*t) | |
*meijerg([], [], [mu/2], [-mu/2], t**2/4), | |
(t, 0, oo)).is_Piecewise | |
s = symbols('s', positive=True) | |
assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo)) == \ | |
gamma(s + 1) | |
assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo), | |
meijerg=True) == gamma(s + 1) | |
assert isinstance(integrate(x**s*meijerg([[], []], [[0], []], x), | |
(x, 0, oo), meijerg=False), | |
Integral) | |
assert meijerint_indefinite(exp(x), x) == exp(x) | |
# TODO what simplifications should be done automatically? | |
# This tests "extra case" for antecedents_1. | |
a, b = symbols('a b', positive=True) | |
assert simplify(meijerint_definite(x**a, x, 0, b)[0]) == \ | |
b**(a + 1)/(a + 1) | |
# This tests various conditions and expansions: | |
assert meijerint_definite((x + 1)**3*exp(-x), x, 0, oo) == (16, True) | |
# Again, how about simplifications? | |
sigma, mu = symbols('sigma mu', positive=True) | |
i, c = meijerint_definite(exp(-((x - mu)/(2*sigma))**2), x, 0, oo) | |
assert simplify(i) == sqrt(pi)*sigma*(2 - erfc(mu/(2*sigma))) | |
assert c == True | |
i, _ = meijerint_definite(exp(-mu*x)*exp(sigma*x), x, 0, oo) | |
# TODO it would be nice to test the condition | |
assert simplify(i) == 1/(mu - sigma) | |
# Test substitutions to change limits | |
assert meijerint_definite(exp(x), x, -oo, 2) == (exp(2), True) | |
# Note: causes a NaN in _check_antecedents | |
assert expand(meijerint_definite(exp(x), x, 0, I)[0]) == exp(I) - 1 | |
assert expand(meijerint_definite(exp(-x), x, 0, x)[0]) == \ | |
1 - exp(-exp(I*arg(x))*abs(x)) | |
# Test -oo to oo | |
assert meijerint_definite(exp(-x**2), x, -oo, oo) == (sqrt(pi), True) | |
assert meijerint_definite(exp(-abs(x)), x, -oo, oo) == (2, True) | |
assert meijerint_definite(exp(-(2*x - 3)**2), x, -oo, oo) == \ | |
(sqrt(pi)/2, True) | |
assert meijerint_definite(exp(-abs(2*x - 3)), x, -oo, oo) == (1, True) | |
assert meijerint_definite(exp(-((x - mu)/sigma)**2/2)/sqrt(2*pi*sigma**2), | |
x, -oo, oo) == (1, True) | |
assert meijerint_definite(sinc(x)**2, x, -oo, oo) == (pi, True) | |
# Test one of the extra conditions for 2 g-functinos | |
assert meijerint_definite(exp(-x)*sin(x), x, 0, oo) == (S.Half, True) | |
# Test a bug | |
def res(n): | |
return (1/(1 + x**2)).diff(x, n).subs(x, 1)*(-1)**n | |
for n in range(6): | |
assert integrate(exp(-x)*sin(x)*x**n, (x, 0, oo), meijerg=True) == \ | |
res(n) | |
# This used to test trigexpand... now it is done by linear substitution | |
assert simplify(integrate(exp(-x)*sin(x + a), (x, 0, oo), meijerg=True) | |
) == sqrt(2)*sin(a + pi/4)/2 | |
# Test the condition 14 from prudnikov. | |
# (This is besselj*besselj in disguise, to stop the product from being | |
# recognised in the tables.) | |
a, b, s = symbols('a b s') | |
assert meijerint_definite(meijerg([], [], [a/2], [-a/2], x/4) | |
*meijerg([], [], [b/2], [-b/2], x/4)*x**(s - 1), x, 0, oo | |
) == ( | |
(4*2**(2*s - 2)*gamma(-2*s + 1)*gamma(a/2 + b/2 + s) | |
/(gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1) | |
*gamma(a/2 + b/2 - s + 1)), | |
(re(s) < 1) & (re(s) < S(1)/2) & (re(a)/2 + re(b)/2 + re(s) > 0))) | |
# test a bug | |
assert integrate(sin(x**a)*sin(x**b), (x, 0, oo), meijerg=True) == \ | |
Integral(sin(x**a)*sin(x**b), (x, 0, oo)) | |
# test better hyperexpand | |
assert integrate(exp(-x**2)*log(x), (x, 0, oo), meijerg=True) == \ | |
(sqrt(pi)*polygamma(0, S.Half)/4).expand() | |
# Test hyperexpand bug. | |
from sympy.functions.special.gamma_functions import lowergamma | |
n = symbols('n', integer=True) | |
assert simplify(integrate(exp(-x)*x**n, x, meijerg=True)) == \ | |
lowergamma(n + 1, x) | |
# Test a bug with argument 1/x | |
alpha = symbols('alpha', positive=True) | |
assert meijerint_definite((2 - x)**alpha*sin(alpha/x), x, 0, 2) == \ | |
(sqrt(pi)*alpha*gamma(alpha + 1)*meijerg(((), (alpha/2 + S.Half, | |
alpha/2 + 1)), ((0, 0, S.Half), (Rational(-1, 2),)), alpha**2/16)/4, True) | |
# test a bug related to 3016 | |
a, s = symbols('a s', positive=True) | |
assert simplify(integrate(x**s*exp(-a*x**2), (x, -oo, oo))) == \ | |
a**(-s/2 - S.Half)*((-1)**s + 1)*gamma(s/2 + S.Half)/2 | |
def test_bessel(): | |
from sympy.functions.special.bessel import (besseli, besselj) | |
assert simplify(integrate(besselj(a, z)*besselj(b, z)/z, (z, 0, oo), | |
meijerg=True, conds='none')) == \ | |
2*sin(pi*(a/2 - b/2))/(pi*(a - b)*(a + b)) | |
assert simplify(integrate(besselj(a, z)*besselj(a, z)/z, (z, 0, oo), | |
meijerg=True, conds='none')) == 1/(2*a) | |
# TODO more orthogonality integrals | |
assert simplify(integrate(sin(z*x)*(x**2 - 1)**(-(y + S.Half)), | |
(x, 1, oo), meijerg=True, conds='none') | |
*2/((z/2)**y*sqrt(pi)*gamma(S.Half - y))) == \ | |
besselj(y, z) | |
# Werner Rosenheinrich | |
# SOME INDEFINITE INTEGRALS OF BESSEL FUNCTIONS | |
assert integrate(x*besselj(0, x), x, meijerg=True) == x*besselj(1, x) | |
assert integrate(x*besseli(0, x), x, meijerg=True) == x*besseli(1, x) | |
# TODO can do higher powers, but come out as high order ... should they be | |
# reduced to order 0, 1? | |
assert integrate(besselj(1, x), x, meijerg=True) == -besselj(0, x) | |
assert integrate(besselj(1, x)**2/x, x, meijerg=True) == \ | |
-(besselj(0, x)**2 + besselj(1, x)**2)/2 | |
# TODO more besseli when tables are extended or recursive mellin works | |
assert integrate(besselj(0, x)**2/x**2, x, meijerg=True) == \ | |
-2*x*besselj(0, x)**2 - 2*x*besselj(1, x)**2 \ | |
+ 2*besselj(0, x)*besselj(1, x) - besselj(0, x)**2/x | |
assert integrate(besselj(0, x)*besselj(1, x), x, meijerg=True) == \ | |
-besselj(0, x)**2/2 | |
assert integrate(x**2*besselj(0, x)*besselj(1, x), x, meijerg=True) == \ | |
x**2*besselj(1, x)**2/2 | |
assert integrate(besselj(0, x)*besselj(1, x)/x, x, meijerg=True) == \ | |
(x*besselj(0, x)**2 + x*besselj(1, x)**2 - | |
besselj(0, x)*besselj(1, x)) | |
# TODO how does besselj(0, a*x)*besselj(0, b*x) work? | |
# TODO how does besselj(0, x)**2*besselj(1, x)**2 work? | |
# TODO sin(x)*besselj(0, x) etc come out a mess | |
# TODO can x*log(x)*besselj(0, x) be done? | |
# TODO how does besselj(1, x)*besselj(0, x+a) work? | |
# TODO more indefinite integrals when struve functions etc are implemented | |
# test a substitution | |
assert integrate(besselj(1, x**2)*x, x, meijerg=True) == \ | |
-besselj(0, x**2)/2 | |
def test_inversion(): | |
from sympy.functions.special.bessel import besselj | |
from sympy.functions.special.delta_functions import Heaviside | |
def inv(f): | |
return piecewise_fold(meijerint_inversion(f, s, t)) | |
assert inv(1/(s**2 + 1)) == sin(t)*Heaviside(t) | |
assert inv(s/(s**2 + 1)) == cos(t)*Heaviside(t) | |
assert inv(exp(-s)/s) == Heaviside(t - 1) | |
assert inv(1/sqrt(1 + s**2)) == besselj(0, t)*Heaviside(t) | |
# Test some antcedents checking. | |
assert meijerint_inversion(sqrt(s)/sqrt(1 + s**2), s, t) is None | |
assert inv(exp(s**2)) is None | |
assert meijerint_inversion(exp(-s**2), s, t) is None | |
def test_inversion_conditional_output(): | |
from sympy.core.symbol import Symbol | |
from sympy.integrals.transforms import InverseLaplaceTransform | |
a = Symbol('a', positive=True) | |
F = sqrt(pi/a)*exp(-2*sqrt(a)*sqrt(s)) | |
f = meijerint_inversion(F, s, t) | |
assert not f.is_Piecewise | |
b = Symbol('b', real=True) | |
F = F.subs(a, b) | |
f2 = meijerint_inversion(F, s, t) | |
assert f2.is_Piecewise | |
# first piece is same as f | |
assert f2.args[0][0] == f.subs(a, b) | |
# last piece is an unevaluated transform | |
assert f2.args[-1][1] | |
ILT = InverseLaplaceTransform(F, s, t, None) | |
assert f2.args[-1][0] == ILT or f2.args[-1][0] == ILT.as_integral | |
def test_inversion_exp_real_nonreal_shift(): | |
from sympy.core.symbol import Symbol | |
from sympy.functions.special.delta_functions import DiracDelta | |
r = Symbol('r', real=True) | |
c = Symbol('c', extended_real=False) | |
a = 1 + 2*I | |
z = Symbol('z') | |
assert not meijerint_inversion(exp(r*s), s, t).is_Piecewise | |
assert meijerint_inversion(exp(a*s), s, t) is None | |
assert meijerint_inversion(exp(c*s), s, t) is None | |
f = meijerint_inversion(exp(z*s), s, t) | |
assert f.is_Piecewise | |
assert isinstance(f.args[0][0], DiracDelta) | |
def test_lookup_table(): | |
from sympy.core.random import uniform, randrange | |
from sympy.core.add import Add | |
from sympy.integrals.meijerint import z as z_dummy | |
table = {} | |
_create_lookup_table(table) | |
for l in table.values(): | |
for formula, terms, cond, hint in sorted(l, key=default_sort_key): | |
subs = {} | |
for ai in list(formula.free_symbols) + [z_dummy]: | |
if hasattr(ai, 'properties') and ai.properties: | |
# these Wilds match positive integers | |
subs[ai] = randrange(1, 10) | |
else: | |
subs[ai] = uniform(1.5, 2.0) | |
if not isinstance(terms, list): | |
terms = terms(subs) | |
# First test that hyperexpand can do this. | |
expanded = [hyperexpand(g) for (_, g) in terms] | |
assert all(x.is_Piecewise or not x.has(meijerg) for x in expanded) | |
# Now test that the meijer g-function is indeed as advertised. | |
expanded = Add(*[f*x for (f, x) in terms]) | |
a, b = formula.n(subs=subs), expanded.n(subs=subs) | |
r = min(abs(a), abs(b)) | |
if r < 1: | |
assert abs(a - b).n() <= 1e-10 | |
else: | |
assert (abs(a - b)/r).n() <= 1e-10 | |
def test_branch_bug(): | |
from sympy.functions.special.gamma_functions import lowergamma | |
from sympy.simplify.powsimp import powdenest | |
# TODO gammasimp cannot prove that the factor is unity | |
assert powdenest(integrate(erf(x**3), x, meijerg=True).diff(x), | |
polar=True) == 2*erf(x**3)*gamma(Rational(2, 3))/3/gamma(Rational(5, 3)) | |
assert integrate(erf(x**3), x, meijerg=True) == \ | |
2*x*erf(x**3)*gamma(Rational(2, 3))/(3*gamma(Rational(5, 3))) \ | |
- 2*gamma(Rational(2, 3))*lowergamma(Rational(2, 3), x**6)/(3*sqrt(pi)*gamma(Rational(5, 3))) | |
def test_linear_subs(): | |
from sympy.functions.special.bessel import besselj | |
assert integrate(sin(x - 1), x, meijerg=True) == -cos(1 - x) | |
assert integrate(besselj(1, x - 1), x, meijerg=True) == -besselj(0, 1 - x) | |
def test_probability(): | |
# various integrals from probability theory | |
from sympy.core.function import expand_mul | |
from sympy.core.symbol import (Symbol, symbols) | |
from sympy.simplify.gammasimp import gammasimp | |
from sympy.simplify.powsimp import powsimp | |
mu1, mu2 = symbols('mu1 mu2', nonzero=True) | |
sigma1, sigma2 = symbols('sigma1 sigma2', positive=True) | |
rate = Symbol('lambda', positive=True) | |
def normal(x, mu, sigma): | |
return 1/sqrt(2*pi*sigma**2)*exp(-(x - mu)**2/2/sigma**2) | |
def exponential(x, rate): | |
return rate*exp(-rate*x) | |
assert integrate(normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == 1 | |
assert integrate(x*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == \ | |
mu1 | |
assert integrate(x**2*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \ | |
== mu1**2 + sigma1**2 | |
assert integrate(x**3*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \ | |
== mu1**3 + 3*mu1*sigma1**2 | |
assert integrate(normal(x, mu1, sigma1)*normal(y, mu2, sigma2), | |
(x, -oo, oo), (y, -oo, oo), meijerg=True) == 1 | |
assert integrate(x*normal(x, mu1, sigma1)*normal(y, mu2, sigma2), | |
(x, -oo, oo), (y, -oo, oo), meijerg=True) == mu1 | |
assert integrate(y*normal(x, mu1, sigma1)*normal(y, mu2, sigma2), | |
(x, -oo, oo), (y, -oo, oo), meijerg=True) == mu2 | |
assert integrate(x*y*normal(x, mu1, sigma1)*normal(y, mu2, sigma2), | |
(x, -oo, oo), (y, -oo, oo), meijerg=True) == mu1*mu2 | |
assert integrate((x + y + 1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2), | |
(x, -oo, oo), (y, -oo, oo), meijerg=True) == 1 + mu1 + mu2 | |
assert integrate((x + y - 1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2), | |
(x, -oo, oo), (y, -oo, oo), meijerg=True) == \ | |
-1 + mu1 + mu2 | |
i = integrate(x**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2), | |
(x, -oo, oo), (y, -oo, oo), meijerg=True) | |
assert not i.has(Abs) | |
assert simplify(i) == mu1**2 + sigma1**2 | |
assert integrate(y**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2), | |
(x, -oo, oo), (y, -oo, oo), meijerg=True) == \ | |
sigma2**2 + mu2**2 | |
assert integrate(exponential(x, rate), (x, 0, oo), meijerg=True) == 1 | |
assert integrate(x*exponential(x, rate), (x, 0, oo), meijerg=True) == \ | |
1/rate | |
assert integrate(x**2*exponential(x, rate), (x, 0, oo), meijerg=True) == \ | |
2/rate**2 | |
def E(expr): | |
res1 = integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1), | |
(x, 0, oo), (y, -oo, oo), meijerg=True) | |
res2 = integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1), | |
(y, -oo, oo), (x, 0, oo), meijerg=True) | |
assert expand_mul(res1) == expand_mul(res2) | |
return res1 | |
assert E(1) == 1 | |
assert E(x*y) == mu1/rate | |
assert E(x*y**2) == mu1**2/rate + sigma1**2/rate | |
ans = sigma1**2 + 1/rate**2 | |
assert simplify(E((x + y + 1)**2) - E(x + y + 1)**2) == ans | |
assert simplify(E((x + y - 1)**2) - E(x + y - 1)**2) == ans | |
assert simplify(E((x + y)**2) - E(x + y)**2) == ans | |
# Beta' distribution | |
alpha, beta = symbols('alpha beta', positive=True) | |
betadist = x**(alpha - 1)*(1 + x)**(-alpha - beta)*gamma(alpha + beta) \ | |
/gamma(alpha)/gamma(beta) | |
assert integrate(betadist, (x, 0, oo), meijerg=True) == 1 | |
i = integrate(x*betadist, (x, 0, oo), meijerg=True, conds='separate') | |
assert (gammasimp(i[0]), i[1]) == (alpha/(beta - 1), 1 < beta) | |
j = integrate(x**2*betadist, (x, 0, oo), meijerg=True, conds='separate') | |
assert j[1] == (beta > 2) | |
assert gammasimp(j[0] - i[0]**2) == (alpha + beta - 1)*alpha \ | |
/(beta - 2)/(beta - 1)**2 | |
# Beta distribution | |
# NOTE: this is evaluated using antiderivatives. It also tests that | |
# meijerint_indefinite returns the simplest possible answer. | |
a, b = symbols('a b', positive=True) | |
betadist = x**(a - 1)*(-x + 1)**(b - 1)*gamma(a + b)/(gamma(a)*gamma(b)) | |
assert simplify(integrate(betadist, (x, 0, 1), meijerg=True)) == 1 | |
assert simplify(integrate(x*betadist, (x, 0, 1), meijerg=True)) == \ | |
a/(a + b) | |
assert simplify(integrate(x**2*betadist, (x, 0, 1), meijerg=True)) == \ | |
a*(a + 1)/(a + b)/(a + b + 1) | |
assert simplify(integrate(x**y*betadist, (x, 0, 1), meijerg=True)) == \ | |
gamma(a + b)*gamma(a + y)/gamma(a)/gamma(a + b + y) | |
# Chi distribution | |
k = Symbol('k', integer=True, positive=True) | |
chi = 2**(1 - k/2)*x**(k - 1)*exp(-x**2/2)/gamma(k/2) | |
assert powsimp(integrate(chi, (x, 0, oo), meijerg=True)) == 1 | |
assert simplify(integrate(x*chi, (x, 0, oo), meijerg=True)) == \ | |
sqrt(2)*gamma((k + 1)/2)/gamma(k/2) | |
assert simplify(integrate(x**2*chi, (x, 0, oo), meijerg=True)) == k | |
# Chi^2 distribution | |
chisquared = 2**(-k/2)/gamma(k/2)*x**(k/2 - 1)*exp(-x/2) | |
assert powsimp(integrate(chisquared, (x, 0, oo), meijerg=True)) == 1 | |
assert simplify(integrate(x*chisquared, (x, 0, oo), meijerg=True)) == k | |
assert simplify(integrate(x**2*chisquared, (x, 0, oo), meijerg=True)) == \ | |
k*(k + 2) | |
assert gammasimp(integrate(((x - k)/sqrt(2*k))**3*chisquared, (x, 0, oo), | |
meijerg=True)) == 2*sqrt(2)/sqrt(k) | |
# Dagum distribution | |
a, b, p = symbols('a b p', positive=True) | |
# XXX (x/b)**a does not work | |
dagum = a*p/x*(x/b)**(a*p)/(1 + x**a/b**a)**(p + 1) | |
assert simplify(integrate(dagum, (x, 0, oo), meijerg=True)) == 1 | |
# XXX conditions are a mess | |
arg = x*dagum | |
assert simplify(integrate(arg, (x, 0, oo), meijerg=True, conds='none') | |
) == a*b*gamma(1 - 1/a)*gamma(p + 1 + 1/a)/( | |
(a*p + 1)*gamma(p)) | |
assert simplify(integrate(x*arg, (x, 0, oo), meijerg=True, conds='none') | |
) == a*b**2*gamma(1 - 2/a)*gamma(p + 1 + 2/a)/( | |
(a*p + 2)*gamma(p)) | |
# F-distribution | |
d1, d2 = symbols('d1 d2', positive=True) | |
f = sqrt(((d1*x)**d1 * d2**d2)/(d1*x + d2)**(d1 + d2))/x \ | |
/gamma(d1/2)/gamma(d2/2)*gamma((d1 + d2)/2) | |
assert simplify(integrate(f, (x, 0, oo), meijerg=True)) == 1 | |
# TODO conditions are a mess | |
assert simplify(integrate(x*f, (x, 0, oo), meijerg=True, conds='none') | |
) == d2/(d2 - 2) | |
assert simplify(integrate(x**2*f, (x, 0, oo), meijerg=True, conds='none') | |
) == d2**2*(d1 + 2)/d1/(d2 - 4)/(d2 - 2) | |
# TODO gamma, rayleigh | |
# inverse gaussian | |
lamda, mu = symbols('lamda mu', positive=True) | |
dist = sqrt(lamda/2/pi)*x**(Rational(-3, 2))*exp(-lamda*(x - mu)**2/x/2/mu**2) | |
mysimp = lambda expr: simplify(expr.rewrite(exp)) | |
assert mysimp(integrate(dist, (x, 0, oo))) == 1 | |
assert mysimp(integrate(x*dist, (x, 0, oo))) == mu | |
assert mysimp(integrate((x - mu)**2*dist, (x, 0, oo))) == mu**3/lamda | |
assert mysimp(integrate((x - mu)**3*dist, (x, 0, oo))) == 3*mu**5/lamda**2 | |
# Levi | |
c = Symbol('c', positive=True) | |
assert integrate(sqrt(c/2/pi)*exp(-c/2/(x - mu))/(x - mu)**S('3/2'), | |
(x, mu, oo)) == 1 | |
# higher moments oo | |
# log-logistic | |
alpha, beta = symbols('alpha beta', positive=True) | |
distn = (beta/alpha)*x**(beta - 1)/alpha**(beta - 1)/ \ | |
(1 + x**beta/alpha**beta)**2 | |
# FIXME: If alpha, beta are not declared as finite the line below hangs | |
# after the changes in: | |
# https://github.com/sympy/sympy/pull/16603 | |
assert simplify(integrate(distn, (x, 0, oo))) == 1 | |
# NOTE the conditions are a mess, but correctly state beta > 1 | |
assert simplify(integrate(x*distn, (x, 0, oo), conds='none')) == \ | |
pi*alpha/beta/sin(pi/beta) | |
# (similar comment for conditions applies) | |
assert simplify(integrate(x**y*distn, (x, 0, oo), conds='none')) == \ | |
pi*alpha**y*y/beta/sin(pi*y/beta) | |
# weibull | |
k = Symbol('k', positive=True) | |
n = Symbol('n', positive=True) | |
distn = k/lamda*(x/lamda)**(k - 1)*exp(-(x/lamda)**k) | |
assert simplify(integrate(distn, (x, 0, oo))) == 1 | |
assert simplify(integrate(x**n*distn, (x, 0, oo))) == \ | |
lamda**n*gamma(1 + n/k) | |
# rice distribution | |
from sympy.functions.special.bessel import besseli | |
nu, sigma = symbols('nu sigma', positive=True) | |
rice = x/sigma**2*exp(-(x**2 + nu**2)/2/sigma**2)*besseli(0, x*nu/sigma**2) | |
assert integrate(rice, (x, 0, oo), meijerg=True) == 1 | |
# can someone verify higher moments? | |
# Laplace distribution | |
mu = Symbol('mu', real=True) | |
b = Symbol('b', positive=True) | |
laplace = exp(-abs(x - mu)/b)/2/b | |
assert integrate(laplace, (x, -oo, oo), meijerg=True) == 1 | |
assert integrate(x*laplace, (x, -oo, oo), meijerg=True) == mu | |
assert integrate(x**2*laplace, (x, -oo, oo), meijerg=True) == \ | |
2*b**2 + mu**2 | |
# TODO are there other distributions supported on (-oo, oo) that we can do? | |
# misc tests | |
k = Symbol('k', positive=True) | |
assert gammasimp(expand_mul(integrate(log(x)*x**(k - 1)*exp(-x)/gamma(k), | |
(x, 0, oo)))) == polygamma(0, k) | |
def test_expint(): | |
""" Test various exponential integrals. """ | |
from sympy.core.symbol import Symbol | |
from sympy.functions.elementary.hyperbolic import sinh | |
from sympy.functions.special.error_functions import (Chi, Ci, Ei, Shi, Si, expint) | |
assert simplify(unpolarify(integrate(exp(-z*x)/x**y, (x, 1, oo), | |
meijerg=True, conds='none' | |
).rewrite(expint).expand(func=True))) == expint(y, z) | |
assert integrate(exp(-z*x)/x, (x, 1, oo), meijerg=True, | |
conds='none').rewrite(expint).expand() == \ | |
expint(1, z) | |
assert integrate(exp(-z*x)/x**2, (x, 1, oo), meijerg=True, | |
conds='none').rewrite(expint).expand() == \ | |
expint(2, z).rewrite(Ei).rewrite(expint) | |
assert integrate(exp(-z*x)/x**3, (x, 1, oo), meijerg=True, | |
conds='none').rewrite(expint).expand() == \ | |
expint(3, z).rewrite(Ei).rewrite(expint).expand() | |
t = Symbol('t', positive=True) | |
assert integrate(-cos(x)/x, (x, t, oo), meijerg=True).expand() == Ci(t) | |
assert integrate(-sin(x)/x, (x, t, oo), meijerg=True).expand() == \ | |
Si(t) - pi/2 | |
assert integrate(sin(x)/x, (x, 0, z), meijerg=True) == Si(z) | |
assert integrate(sinh(x)/x, (x, 0, z), meijerg=True) == Shi(z) | |
assert integrate(exp(-x)/x, x, meijerg=True).expand().rewrite(expint) == \ | |
I*pi - expint(1, x) | |
assert integrate(exp(-x)/x**2, x, meijerg=True).rewrite(expint).expand() \ | |
== expint(1, x) - exp(-x)/x - I*pi | |
u = Symbol('u', polar=True) | |
assert integrate(cos(u)/u, u, meijerg=True).expand().as_independent(u)[1] \ | |
== Ci(u) | |
assert integrate(cosh(u)/u, u, meijerg=True).expand().as_independent(u)[1] \ | |
== Chi(u) | |
assert integrate(expint(1, x), x, meijerg=True | |
).rewrite(expint).expand() == x*expint(1, x) - exp(-x) | |
assert integrate(expint(2, x), x, meijerg=True | |
).rewrite(expint).expand() == \ | |
-x**2*expint(1, x)/2 + x*exp(-x)/2 - exp(-x)/2 | |
assert simplify(unpolarify(integrate(expint(y, x), x, | |
meijerg=True).rewrite(expint).expand(func=True))) == \ | |
-expint(y + 1, x) | |
assert integrate(Si(x), x, meijerg=True) == x*Si(x) + cos(x) | |
assert integrate(Ci(u), u, meijerg=True).expand() == u*Ci(u) - sin(u) | |
assert integrate(Shi(x), x, meijerg=True) == x*Shi(x) - cosh(x) | |
assert integrate(Chi(u), u, meijerg=True).expand() == u*Chi(u) - sinh(u) | |
assert integrate(Si(x)*exp(-x), (x, 0, oo), meijerg=True) == pi/4 | |
assert integrate(expint(1, x)*sin(x), (x, 0, oo), meijerg=True) == log(2)/2 | |
def test_messy(): | |
from sympy.functions.elementary.hyperbolic import (acosh, acoth) | |
from sympy.functions.elementary.trigonometric import (asin, atan) | |
from sympy.functions.special.bessel import besselj | |
from sympy.functions.special.error_functions import (Chi, E1, Shi, Si) | |
from sympy.integrals.transforms import (fourier_transform, laplace_transform) | |
assert (laplace_transform(Si(x), x, s, simplify=True) == | |
((-atan(s) + pi/2)/s, 0, True)) | |
assert laplace_transform(Shi(x), x, s, simplify=True) == ( | |
acoth(s)/s, -oo, s**2 > 1) | |
# where should the logs be simplified? | |
assert laplace_transform(Chi(x), x, s, simplify=True) == ( | |
(log(s**(-2)) - log(1 - 1/s**2))/(2*s), -oo, s**2 > 1) | |
# TODO maybe simplify the inequalities? when the simplification | |
# allows for generators instead of symbols this will work | |
assert laplace_transform(besselj(a, x), x, s)[1:] == \ | |
(0, (re(a) > -2) & (re(a) > -1)) | |
# NOTE s < 0 can be done, but argument reduction is not good enough yet | |
ans = fourier_transform(besselj(1, x)/x, x, s, noconds=False) | |
assert (ans[0].factor(deep=True).expand(), ans[1]) == \ | |
(Piecewise((0, (s > 1/(2*pi)) | (s < -1/(2*pi))), | |
(2*sqrt(-4*pi**2*s**2 + 1), True)), s > 0) | |
# TODO FT(besselj(0,x)) - conditions are messy (but for acceptable reasons) | |
# - folding could be better | |
assert integrate(E1(x)*besselj(0, x), (x, 0, oo), meijerg=True) == \ | |
log(1 + sqrt(2)) | |
assert integrate(E1(x)*besselj(1, x), (x, 0, oo), meijerg=True) == \ | |
log(S.Half + sqrt(2)/2) | |
assert integrate(1/x/sqrt(1 - x**2), x, meijerg=True) == \ | |
Piecewise((-acosh(1/x), abs(x**(-2)) > 1), (I*asin(1/x), True)) | |
def test_issue_6122(): | |
assert integrate(exp(-I*x**2), (x, -oo, oo), meijerg=True) == \ | |
-I*sqrt(pi)*exp(I*pi/4) | |
def test_issue_6252(): | |
expr = 1/x/(a + b*x)**Rational(1, 3) | |
anti = integrate(expr, x, meijerg=True) | |
assert not anti.has(hyper) | |
# XXX the expression is a mess, but actually upon differentiation and | |
# putting in numerical values seems to work... | |
def test_issue_6348(): | |
assert integrate(exp(I*x)/(1 + x**2), (x, -oo, oo)).simplify().rewrite(exp) \ | |
== pi*exp(-1) | |
def test_fresnel(): | |
from sympy.functions.special.error_functions import (fresnelc, fresnels) | |
assert expand_func(integrate(sin(pi*x**2/2), x)) == fresnels(x) | |
assert expand_func(integrate(cos(pi*x**2/2), x)) == fresnelc(x) | |
def test_issue_6860(): | |
assert meijerint_indefinite(x**x**x, x) is None | |
def test_issue_7337(): | |
f = meijerint_indefinite(x*sqrt(2*x + 3), x).together() | |
assert f == sqrt(2*x + 3)*(2*x**2 + x - 3)/5 | |
assert f._eval_interval(x, S.NegativeOne, S.One) == Rational(2, 5) | |
def test_issue_8368(): | |
assert meijerint_indefinite(cosh(x)*exp(-x*t), x) == ( | |
(-t - 1)*exp(x) + (-t + 1)*exp(-x))*exp(-t*x)/2/(t**2 - 1) | |
def test_issue_10211(): | |
from sympy.abc import h, w | |
assert integrate((1/sqrt((y-x)**2 + h**2)**3), (x,0,w), (y,0,w)) == \ | |
2*sqrt(1 + w**2/h**2)/h - 2/h | |
def test_issue_11806(): | |
from sympy.core.symbol import symbols | |
y, L = symbols('y L', positive=True) | |
assert integrate(1/sqrt(x**2 + y**2)**3, (x, -L, L)) == \ | |
2*L/(y**2*sqrt(L**2 + y**2)) | |
def test_issue_10681(): | |
from sympy.polys.domains.realfield import RR | |
from sympy.abc import R, r | |
f = integrate(r**2*(R**2-r**2)**0.5, r, meijerg=True) | |
g = (1.0/3)*R**1.0*r**3*hyper((-0.5, Rational(3, 2)), (Rational(5, 2),), | |
r**2*exp_polar(2*I*pi)/R**2) | |
assert RR.almosteq((f/g).n(), 1.0, 1e-12) | |
def test_issue_13536(): | |
from sympy.core.symbol import Symbol | |
a = Symbol('a', positive=True) | |
assert integrate(1/x**2, (x, oo, a)) == -1/a | |
def test_issue_6462(): | |
from sympy.core.symbol import Symbol | |
x = Symbol('x') | |
n = Symbol('n') | |
# Not the actual issue, still wrong answer for n = 1, but that there is no | |
# exception | |
assert integrate(cos(x**n)/x**n, x, meijerg=True).subs(n, 2).equals( | |
integrate(cos(x**2)/x**2, x, meijerg=True)) | |
def test_indefinite_1_bug(): | |
assert integrate((b + t)**(-a), t, meijerg=True) == -b*(1 + t/b)**(1 - a)/(a*b**a - b**a) | |
def test_pr_23583(): | |
# This result is wrong. Check whether new result is correct when this test fail. | |
assert integrate(1/sqrt((x - I)**2-1), meijerg=True) == \ | |
Piecewise((acosh(x - I), Abs((x - I)**2) > 1), (-I*asin(x - I), True)) | |
# 25786 | |
def test_integrate_function_of_square_over_negatives(): | |
assert integrate(exp(-x**2), (x,-5,0), meijerg=True) == sqrt(pi)/2 * erf(5) | |
def test_issue_25949(): | |
from sympy.core.symbol import symbols | |
y = symbols("y", nonzero=True) | |
assert integrate(cosh(y*(x + 1)), (x, -1, -0.25), meijerg=True) == sinh(0.75*y)/y | |