Kano001's picture
Upload 3077 files
6a86ad5 verified
raw
history blame
15.3 kB
"""For more tests on satisfiability, see test_dimacs"""
from sympy.assumptions.ask import Q
from sympy.core.symbol import symbols
from sympy.core.relational import Unequality
from sympy.logic.boolalg import And, Or, Implies, Equivalent, true, false
from sympy.logic.inference import literal_symbol, \
pl_true, satisfiable, valid, entails, PropKB
from sympy.logic.algorithms.dpll import dpll, dpll_satisfiable, \
find_pure_symbol, find_unit_clause, unit_propagate, \
find_pure_symbol_int_repr, find_unit_clause_int_repr, \
unit_propagate_int_repr
from sympy.logic.algorithms.dpll2 import dpll_satisfiable as dpll2_satisfiable
from sympy.logic.algorithms.z3_wrapper import z3_satisfiable
from sympy.assumptions.cnf import CNF, EncodedCNF
from sympy.logic.tests.test_lra_theory import make_random_problem
from sympy.core.random import randint
from sympy.testing.pytest import raises, skip
from sympy.external import import_module
def test_literal():
A, B = symbols('A,B')
assert literal_symbol(True) is True
assert literal_symbol(False) is False
assert literal_symbol(A) is A
assert literal_symbol(~A) is A
def test_find_pure_symbol():
A, B, C = symbols('A,B,C')
assert find_pure_symbol([A], [A]) == (A, True)
assert find_pure_symbol([A, B], [~A | B, ~B | A]) == (None, None)
assert find_pure_symbol([A, B, C], [ A | ~B, ~B | ~C, C | A]) == (A, True)
assert find_pure_symbol([A, B, C], [~A | B, B | ~C, C | A]) == (B, True)
assert find_pure_symbol([A, B, C], [~A | ~B, ~B | ~C, C | A]) == (B, False)
assert find_pure_symbol(
[A, B, C], [~A | B, ~B | ~C, C | A]) == (None, None)
def test_find_pure_symbol_int_repr():
assert find_pure_symbol_int_repr([1], [{1}]) == (1, True)
assert find_pure_symbol_int_repr([1, 2],
[{-1, 2}, {-2, 1}]) == (None, None)
assert find_pure_symbol_int_repr([1, 2, 3],
[{1, -2}, {-2, -3}, {3, 1}]) == (1, True)
assert find_pure_symbol_int_repr([1, 2, 3],
[{-1, 2}, {2, -3}, {3, 1}]) == (2, True)
assert find_pure_symbol_int_repr([1, 2, 3],
[{-1, -2}, {-2, -3}, {3, 1}]) == (2, False)
assert find_pure_symbol_int_repr([1, 2, 3],
[{-1, 2}, {-2, -3}, {3, 1}]) == (None, None)
def test_unit_clause():
A, B, C = symbols('A,B,C')
assert find_unit_clause([A], {}) == (A, True)
assert find_unit_clause([A, ~A], {}) == (A, True) # Wrong ??
assert find_unit_clause([A | B], {A: True}) == (B, True)
assert find_unit_clause([A | B], {B: True}) == (A, True)
assert find_unit_clause(
[A | B | C, B | ~C, A | ~B], {A: True}) == (B, False)
assert find_unit_clause([A | B | C, B | ~C, A | B], {A: True}) == (B, True)
assert find_unit_clause([A | B | C, B | ~C, A ], {}) == (A, True)
def test_unit_clause_int_repr():
assert find_unit_clause_int_repr(map(set, [[1]]), {}) == (1, True)
assert find_unit_clause_int_repr(map(set, [[1], [-1]]), {}) == (1, True)
assert find_unit_clause_int_repr([{1, 2}], {1: True}) == (2, True)
assert find_unit_clause_int_repr([{1, 2}], {2: True}) == (1, True)
assert find_unit_clause_int_repr(map(set,
[[1, 2, 3], [2, -3], [1, -2]]), {1: True}) == (2, False)
assert find_unit_clause_int_repr(map(set,
[[1, 2, 3], [3, -3], [1, 2]]), {1: True}) == (2, True)
A, B, C = symbols('A,B,C')
assert find_unit_clause([A | B | C, B | ~C, A ], {}) == (A, True)
def test_unit_propagate():
A, B, C = symbols('A,B,C')
assert unit_propagate([A | B], A) == []
assert unit_propagate([A | B, ~A | C, ~C | B, A], A) == [C, ~C | B, A]
def test_unit_propagate_int_repr():
assert unit_propagate_int_repr([{1, 2}], 1) == []
assert unit_propagate_int_repr(map(set,
[[1, 2], [-1, 3], [-3, 2], [1]]), 1) == [{3}, {-3, 2}]
def test_dpll():
"""This is also tested in test_dimacs"""
A, B, C = symbols('A,B,C')
assert dpll([A | B], [A, B], {A: True, B: True}) == {A: True, B: True}
def test_dpll_satisfiable():
A, B, C = symbols('A,B,C')
assert dpll_satisfiable( A & ~A ) is False
assert dpll_satisfiable( A & ~B ) == {A: True, B: False}
assert dpll_satisfiable(
A | B ) in ({A: True}, {B: True}, {A: True, B: True})
assert dpll_satisfiable(
(~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
assert dpll_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False},
{A: True, C: True}, {B: True, C: True})
assert dpll_satisfiable( A & B & C ) == {A: True, B: True, C: True}
assert dpll_satisfiable( (A | B) & (A >> B) ) == {B: True}
assert dpll_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
assert dpll_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}
def test_dpll2_satisfiable():
A, B, C = symbols('A,B,C')
assert dpll2_satisfiable( A & ~A ) is False
assert dpll2_satisfiable( A & ~B ) == {A: True, B: False}
assert dpll2_satisfiable(
A | B ) in ({A: True}, {B: True}, {A: True, B: True})
assert dpll2_satisfiable(
(~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
assert dpll2_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False, C: True},
{A: True, B: True, C: True})
assert dpll2_satisfiable( A & B & C ) == {A: True, B: True, C: True}
assert dpll2_satisfiable( (A | B) & (A >> B) ) in ({B: True, A: False},
{B: True, A: True})
assert dpll2_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
assert dpll2_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}
def test_minisat22_satisfiable():
A, B, C = symbols('A,B,C')
minisat22_satisfiable = lambda expr: satisfiable(expr, algorithm="minisat22")
assert minisat22_satisfiable( A & ~A ) is False
assert minisat22_satisfiable( A & ~B ) == {A: True, B: False}
assert minisat22_satisfiable(
A | B ) in ({A: True}, {B: False}, {A: False, B: True}, {A: True, B: True}, {A: True, B: False})
assert minisat22_satisfiable(
(~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
assert minisat22_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False, C: True},
{A: True, B: True, C: True}, {A: False, B: True, C: True}, {A: True, B: False, C: False})
assert minisat22_satisfiable( A & B & C ) == {A: True, B: True, C: True}
assert minisat22_satisfiable( (A | B) & (A >> B) ) in ({B: True, A: False},
{B: True, A: True})
assert minisat22_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
assert minisat22_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}
def test_minisat22_minimal_satisfiable():
A, B, C = symbols('A,B,C')
minisat22_satisfiable = lambda expr, minimal=True: satisfiable(expr, algorithm="minisat22", minimal=True)
assert minisat22_satisfiable( A & ~A ) is False
assert minisat22_satisfiable( A & ~B ) == {A: True, B: False}
assert minisat22_satisfiable(
A | B ) in ({A: True}, {B: False}, {A: False, B: True}, {A: True, B: True}, {A: True, B: False})
assert minisat22_satisfiable(
(~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
assert minisat22_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False, C: True},
{A: True, B: True, C: True}, {A: False, B: True, C: True}, {A: True, B: False, C: False})
assert minisat22_satisfiable( A & B & C ) == {A: True, B: True, C: True}
assert minisat22_satisfiable( (A | B) & (A >> B) ) in ({B: True, A: False},
{B: True, A: True})
assert minisat22_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
assert minisat22_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}
g = satisfiable((A | B | C),algorithm="minisat22",minimal=True,all_models=True)
sol = next(g)
first_solution = {key for key, value in sol.items() if value}
sol=next(g)
second_solution = {key for key, value in sol.items() if value}
sol=next(g)
third_solution = {key for key, value in sol.items() if value}
assert not first_solution <= second_solution
assert not second_solution <= third_solution
assert not first_solution <= third_solution
def test_satisfiable():
A, B, C = symbols('A,B,C')
assert satisfiable(A & (A >> B) & ~B) is False
def test_valid():
A, B, C = symbols('A,B,C')
assert valid(A >> (B >> A)) is True
assert valid((A >> (B >> C)) >> ((A >> B) >> (A >> C))) is True
assert valid((~B >> ~A) >> (A >> B)) is True
assert valid(A | B | C) is False
assert valid(A >> B) is False
def test_pl_true():
A, B, C = symbols('A,B,C')
assert pl_true(True) is True
assert pl_true( A & B, {A: True, B: True}) is True
assert pl_true( A | B, {A: True}) is True
assert pl_true( A | B, {B: True}) is True
assert pl_true( A | B, {A: None, B: True}) is True
assert pl_true( A >> B, {A: False}) is True
assert pl_true( A | B | ~C, {A: False, B: True, C: True}) is True
assert pl_true(Equivalent(A, B), {A: False, B: False}) is True
# test for false
assert pl_true(False) is False
assert pl_true( A & B, {A: False, B: False}) is False
assert pl_true( A & B, {A: False}) is False
assert pl_true( A & B, {B: False}) is False
assert pl_true( A | B, {A: False, B: False}) is False
#test for None
assert pl_true(B, {B: None}) is None
assert pl_true( A & B, {A: True, B: None}) is None
assert pl_true( A >> B, {A: True, B: None}) is None
assert pl_true(Equivalent(A, B), {A: None}) is None
assert pl_true(Equivalent(A, B), {A: True, B: None}) is None
# Test for deep
assert pl_true(A | B, {A: False}, deep=True) is None
assert pl_true(~A & ~B, {A: False}, deep=True) is None
assert pl_true(A | B, {A: False, B: False}, deep=True) is False
assert pl_true(A & B & (~A | ~B), {A: True}, deep=True) is False
assert pl_true((C >> A) >> (B >> A), {C: True}, deep=True) is True
def test_pl_true_wrong_input():
from sympy.core.numbers import pi
raises(ValueError, lambda: pl_true('John Cleese'))
raises(ValueError, lambda: pl_true(42 + pi + pi ** 2))
raises(ValueError, lambda: pl_true(42))
def test_entails():
A, B, C = symbols('A, B, C')
assert entails(A, [A >> B, ~B]) is False
assert entails(B, [Equivalent(A, B), A]) is True
assert entails((A >> B) >> (~A >> ~B)) is False
assert entails((A >> B) >> (~B >> ~A)) is True
def test_PropKB():
A, B, C = symbols('A,B,C')
kb = PropKB()
assert kb.ask(A >> B) is False
assert kb.ask(A >> (B >> A)) is True
kb.tell(A >> B)
kb.tell(B >> C)
assert kb.ask(A) is False
assert kb.ask(B) is False
assert kb.ask(C) is False
assert kb.ask(~A) is False
assert kb.ask(~B) is False
assert kb.ask(~C) is False
assert kb.ask(A >> C) is True
kb.tell(A)
assert kb.ask(A) is True
assert kb.ask(B) is True
assert kb.ask(C) is True
assert kb.ask(~C) is False
kb.retract(A)
assert kb.ask(C) is False
def test_propKB_tolerant():
""""tolerant to bad input"""
kb = PropKB()
A, B, C = symbols('A,B,C')
assert kb.ask(B) is False
def test_satisfiable_non_symbols():
x, y = symbols('x y')
assumptions = Q.zero(x*y)
facts = Implies(Q.zero(x*y), Q.zero(x) | Q.zero(y))
query = ~Q.zero(x) & ~Q.zero(y)
refutations = [
{Q.zero(x): True, Q.zero(x*y): True},
{Q.zero(y): True, Q.zero(x*y): True},
{Q.zero(x): True, Q.zero(y): True, Q.zero(x*y): True},
{Q.zero(x): True, Q.zero(y): False, Q.zero(x*y): True},
{Q.zero(x): False, Q.zero(y): True, Q.zero(x*y): True}]
assert not satisfiable(And(assumptions, facts, query), algorithm='dpll')
assert satisfiable(And(assumptions, facts, ~query), algorithm='dpll') in refutations
assert not satisfiable(And(assumptions, facts, query), algorithm='dpll2')
assert satisfiable(And(assumptions, facts, ~query), algorithm='dpll2') in refutations
def test_satisfiable_bool():
from sympy.core.singleton import S
assert satisfiable(true) == {true: true}
assert satisfiable(S.true) == {true: true}
assert satisfiable(false) is False
assert satisfiable(S.false) is False
def test_satisfiable_all_models():
from sympy.abc import A, B
assert next(satisfiable(False, all_models=True)) is False
assert list(satisfiable((A >> ~A) & A, all_models=True)) == [False]
assert list(satisfiable(True, all_models=True)) == [{true: true}]
models = [{A: True, B: False}, {A: False, B: True}]
result = satisfiable(A ^ B, all_models=True)
models.remove(next(result))
models.remove(next(result))
raises(StopIteration, lambda: next(result))
assert not models
assert list(satisfiable(Equivalent(A, B), all_models=True)) == \
[{A: False, B: False}, {A: True, B: True}]
models = [{A: False, B: False}, {A: False, B: True}, {A: True, B: True}]
for model in satisfiable(A >> B, all_models=True):
models.remove(model)
assert not models
# This is a santiy test to check that only the required number
# of solutions are generated. The expr below has 2**100 - 1 models
# which would time out the test if all are generated at once.
from sympy.utilities.iterables import numbered_symbols
from sympy.logic.boolalg import Or
sym = numbered_symbols()
X = [next(sym) for i in range(100)]
result = satisfiable(Or(*X), all_models=True)
for i in range(10):
assert next(result)
def test_z3():
z3 = import_module("z3")
if not z3:
skip("z3 not installed.")
A, B, C = symbols('A,B,C')
x, y, z = symbols('x,y,z')
assert z3_satisfiable((x >= 2) & (x < 1)) is False
assert z3_satisfiable( A & ~A ) is False
model = z3_satisfiable(A & (~A | B | C))
assert bool(model) is True
assert model[A] is True
# test nonlinear function
assert z3_satisfiable((x ** 2 >= 2) & (x < 1) & (x > -1)) is False
def test_z3_vs_lra_dpll2():
z3 = import_module("z3")
if z3 is None:
skip("z3 not installed.")
def boolean_formula_to_encoded_cnf(bf):
cnf = CNF.from_prop(bf)
enc = EncodedCNF()
enc.from_cnf(cnf)
return enc
def make_random_cnf(num_clauses=5, num_constraints=10, num_var=2):
assert num_clauses <= num_constraints
constraints = make_random_problem(num_variables=num_var, num_constraints=num_constraints, rational=False)
clauses = [[cons] for cons in constraints[:num_clauses]]
for cons in constraints[num_clauses:]:
if isinstance(cons, Unequality):
cons = ~cons
i = randint(0, num_clauses-1)
clauses[i].append(cons)
clauses = [Or(*clause) for clause in clauses]
cnf = And(*clauses)
return boolean_formula_to_encoded_cnf(cnf)
lra_dpll2_satisfiable = lambda x: dpll2_satisfiable(x, use_lra_theory=True)
for _ in range(50):
cnf = make_random_cnf(num_clauses=10, num_constraints=15, num_var=2)
try:
z3_sat = z3_satisfiable(cnf)
except z3.z3types.Z3Exception:
continue
lra_dpll2_sat = lra_dpll2_satisfiable(cnf) is not False
assert z3_sat == lra_dpll2_sat