Spaces:
Sleeping
Sleeping
"""For more tests on satisfiability, see test_dimacs""" | |
from sympy.assumptions.ask import Q | |
from sympy.core.symbol import symbols | |
from sympy.core.relational import Unequality | |
from sympy.logic.boolalg import And, Or, Implies, Equivalent, true, false | |
from sympy.logic.inference import literal_symbol, \ | |
pl_true, satisfiable, valid, entails, PropKB | |
from sympy.logic.algorithms.dpll import dpll, dpll_satisfiable, \ | |
find_pure_symbol, find_unit_clause, unit_propagate, \ | |
find_pure_symbol_int_repr, find_unit_clause_int_repr, \ | |
unit_propagate_int_repr | |
from sympy.logic.algorithms.dpll2 import dpll_satisfiable as dpll2_satisfiable | |
from sympy.logic.algorithms.z3_wrapper import z3_satisfiable | |
from sympy.assumptions.cnf import CNF, EncodedCNF | |
from sympy.logic.tests.test_lra_theory import make_random_problem | |
from sympy.core.random import randint | |
from sympy.testing.pytest import raises, skip | |
from sympy.external import import_module | |
def test_literal(): | |
A, B = symbols('A,B') | |
assert literal_symbol(True) is True | |
assert literal_symbol(False) is False | |
assert literal_symbol(A) is A | |
assert literal_symbol(~A) is A | |
def test_find_pure_symbol(): | |
A, B, C = symbols('A,B,C') | |
assert find_pure_symbol([A], [A]) == (A, True) | |
assert find_pure_symbol([A, B], [~A | B, ~B | A]) == (None, None) | |
assert find_pure_symbol([A, B, C], [ A | ~B, ~B | ~C, C | A]) == (A, True) | |
assert find_pure_symbol([A, B, C], [~A | B, B | ~C, C | A]) == (B, True) | |
assert find_pure_symbol([A, B, C], [~A | ~B, ~B | ~C, C | A]) == (B, False) | |
assert find_pure_symbol( | |
[A, B, C], [~A | B, ~B | ~C, C | A]) == (None, None) | |
def test_find_pure_symbol_int_repr(): | |
assert find_pure_symbol_int_repr([1], [{1}]) == (1, True) | |
assert find_pure_symbol_int_repr([1, 2], | |
[{-1, 2}, {-2, 1}]) == (None, None) | |
assert find_pure_symbol_int_repr([1, 2, 3], | |
[{1, -2}, {-2, -3}, {3, 1}]) == (1, True) | |
assert find_pure_symbol_int_repr([1, 2, 3], | |
[{-1, 2}, {2, -3}, {3, 1}]) == (2, True) | |
assert find_pure_symbol_int_repr([1, 2, 3], | |
[{-1, -2}, {-2, -3}, {3, 1}]) == (2, False) | |
assert find_pure_symbol_int_repr([1, 2, 3], | |
[{-1, 2}, {-2, -3}, {3, 1}]) == (None, None) | |
def test_unit_clause(): | |
A, B, C = symbols('A,B,C') | |
assert find_unit_clause([A], {}) == (A, True) | |
assert find_unit_clause([A, ~A], {}) == (A, True) # Wrong ?? | |
assert find_unit_clause([A | B], {A: True}) == (B, True) | |
assert find_unit_clause([A | B], {B: True}) == (A, True) | |
assert find_unit_clause( | |
[A | B | C, B | ~C, A | ~B], {A: True}) == (B, False) | |
assert find_unit_clause([A | B | C, B | ~C, A | B], {A: True}) == (B, True) | |
assert find_unit_clause([A | B | C, B | ~C, A ], {}) == (A, True) | |
def test_unit_clause_int_repr(): | |
assert find_unit_clause_int_repr(map(set, [[1]]), {}) == (1, True) | |
assert find_unit_clause_int_repr(map(set, [[1], [-1]]), {}) == (1, True) | |
assert find_unit_clause_int_repr([{1, 2}], {1: True}) == (2, True) | |
assert find_unit_clause_int_repr([{1, 2}], {2: True}) == (1, True) | |
assert find_unit_clause_int_repr(map(set, | |
[[1, 2, 3], [2, -3], [1, -2]]), {1: True}) == (2, False) | |
assert find_unit_clause_int_repr(map(set, | |
[[1, 2, 3], [3, -3], [1, 2]]), {1: True}) == (2, True) | |
A, B, C = symbols('A,B,C') | |
assert find_unit_clause([A | B | C, B | ~C, A ], {}) == (A, True) | |
def test_unit_propagate(): | |
A, B, C = symbols('A,B,C') | |
assert unit_propagate([A | B], A) == [] | |
assert unit_propagate([A | B, ~A | C, ~C | B, A], A) == [C, ~C | B, A] | |
def test_unit_propagate_int_repr(): | |
assert unit_propagate_int_repr([{1, 2}], 1) == [] | |
assert unit_propagate_int_repr(map(set, | |
[[1, 2], [-1, 3], [-3, 2], [1]]), 1) == [{3}, {-3, 2}] | |
def test_dpll(): | |
"""This is also tested in test_dimacs""" | |
A, B, C = symbols('A,B,C') | |
assert dpll([A | B], [A, B], {A: True, B: True}) == {A: True, B: True} | |
def test_dpll_satisfiable(): | |
A, B, C = symbols('A,B,C') | |
assert dpll_satisfiable( A & ~A ) is False | |
assert dpll_satisfiable( A & ~B ) == {A: True, B: False} | |
assert dpll_satisfiable( | |
A | B ) in ({A: True}, {B: True}, {A: True, B: True}) | |
assert dpll_satisfiable( | |
(~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False}) | |
assert dpll_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False}, | |
{A: True, C: True}, {B: True, C: True}) | |
assert dpll_satisfiable( A & B & C ) == {A: True, B: True, C: True} | |
assert dpll_satisfiable( (A | B) & (A >> B) ) == {B: True} | |
assert dpll_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True} | |
assert dpll_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False} | |
def test_dpll2_satisfiable(): | |
A, B, C = symbols('A,B,C') | |
assert dpll2_satisfiable( A & ~A ) is False | |
assert dpll2_satisfiable( A & ~B ) == {A: True, B: False} | |
assert dpll2_satisfiable( | |
A | B ) in ({A: True}, {B: True}, {A: True, B: True}) | |
assert dpll2_satisfiable( | |
(~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False}) | |
assert dpll2_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False, C: True}, | |
{A: True, B: True, C: True}) | |
assert dpll2_satisfiable( A & B & C ) == {A: True, B: True, C: True} | |
assert dpll2_satisfiable( (A | B) & (A >> B) ) in ({B: True, A: False}, | |
{B: True, A: True}) | |
assert dpll2_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True} | |
assert dpll2_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False} | |
def test_minisat22_satisfiable(): | |
A, B, C = symbols('A,B,C') | |
minisat22_satisfiable = lambda expr: satisfiable(expr, algorithm="minisat22") | |
assert minisat22_satisfiable( A & ~A ) is False | |
assert minisat22_satisfiable( A & ~B ) == {A: True, B: False} | |
assert minisat22_satisfiable( | |
A | B ) in ({A: True}, {B: False}, {A: False, B: True}, {A: True, B: True}, {A: True, B: False}) | |
assert minisat22_satisfiable( | |
(~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False}) | |
assert minisat22_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False, C: True}, | |
{A: True, B: True, C: True}, {A: False, B: True, C: True}, {A: True, B: False, C: False}) | |
assert minisat22_satisfiable( A & B & C ) == {A: True, B: True, C: True} | |
assert minisat22_satisfiable( (A | B) & (A >> B) ) in ({B: True, A: False}, | |
{B: True, A: True}) | |
assert minisat22_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True} | |
assert minisat22_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False} | |
def test_minisat22_minimal_satisfiable(): | |
A, B, C = symbols('A,B,C') | |
minisat22_satisfiable = lambda expr, minimal=True: satisfiable(expr, algorithm="minisat22", minimal=True) | |
assert minisat22_satisfiable( A & ~A ) is False | |
assert minisat22_satisfiable( A & ~B ) == {A: True, B: False} | |
assert minisat22_satisfiable( | |
A | B ) in ({A: True}, {B: False}, {A: False, B: True}, {A: True, B: True}, {A: True, B: False}) | |
assert minisat22_satisfiable( | |
(~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False}) | |
assert minisat22_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False, C: True}, | |
{A: True, B: True, C: True}, {A: False, B: True, C: True}, {A: True, B: False, C: False}) | |
assert minisat22_satisfiable( A & B & C ) == {A: True, B: True, C: True} | |
assert minisat22_satisfiable( (A | B) & (A >> B) ) in ({B: True, A: False}, | |
{B: True, A: True}) | |
assert minisat22_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True} | |
assert minisat22_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False} | |
g = satisfiable((A | B | C),algorithm="minisat22",minimal=True,all_models=True) | |
sol = next(g) | |
first_solution = {key for key, value in sol.items() if value} | |
sol=next(g) | |
second_solution = {key for key, value in sol.items() if value} | |
sol=next(g) | |
third_solution = {key for key, value in sol.items() if value} | |
assert not first_solution <= second_solution | |
assert not second_solution <= third_solution | |
assert not first_solution <= third_solution | |
def test_satisfiable(): | |
A, B, C = symbols('A,B,C') | |
assert satisfiable(A & (A >> B) & ~B) is False | |
def test_valid(): | |
A, B, C = symbols('A,B,C') | |
assert valid(A >> (B >> A)) is True | |
assert valid((A >> (B >> C)) >> ((A >> B) >> (A >> C))) is True | |
assert valid((~B >> ~A) >> (A >> B)) is True | |
assert valid(A | B | C) is False | |
assert valid(A >> B) is False | |
def test_pl_true(): | |
A, B, C = symbols('A,B,C') | |
assert pl_true(True) is True | |
assert pl_true( A & B, {A: True, B: True}) is True | |
assert pl_true( A | B, {A: True}) is True | |
assert pl_true( A | B, {B: True}) is True | |
assert pl_true( A | B, {A: None, B: True}) is True | |
assert pl_true( A >> B, {A: False}) is True | |
assert pl_true( A | B | ~C, {A: False, B: True, C: True}) is True | |
assert pl_true(Equivalent(A, B), {A: False, B: False}) is True | |
# test for false | |
assert pl_true(False) is False | |
assert pl_true( A & B, {A: False, B: False}) is False | |
assert pl_true( A & B, {A: False}) is False | |
assert pl_true( A & B, {B: False}) is False | |
assert pl_true( A | B, {A: False, B: False}) is False | |
#test for None | |
assert pl_true(B, {B: None}) is None | |
assert pl_true( A & B, {A: True, B: None}) is None | |
assert pl_true( A >> B, {A: True, B: None}) is None | |
assert pl_true(Equivalent(A, B), {A: None}) is None | |
assert pl_true(Equivalent(A, B), {A: True, B: None}) is None | |
# Test for deep | |
assert pl_true(A | B, {A: False}, deep=True) is None | |
assert pl_true(~A & ~B, {A: False}, deep=True) is None | |
assert pl_true(A | B, {A: False, B: False}, deep=True) is False | |
assert pl_true(A & B & (~A | ~B), {A: True}, deep=True) is False | |
assert pl_true((C >> A) >> (B >> A), {C: True}, deep=True) is True | |
def test_pl_true_wrong_input(): | |
from sympy.core.numbers import pi | |
raises(ValueError, lambda: pl_true('John Cleese')) | |
raises(ValueError, lambda: pl_true(42 + pi + pi ** 2)) | |
raises(ValueError, lambda: pl_true(42)) | |
def test_entails(): | |
A, B, C = symbols('A, B, C') | |
assert entails(A, [A >> B, ~B]) is False | |
assert entails(B, [Equivalent(A, B), A]) is True | |
assert entails((A >> B) >> (~A >> ~B)) is False | |
assert entails((A >> B) >> (~B >> ~A)) is True | |
def test_PropKB(): | |
A, B, C = symbols('A,B,C') | |
kb = PropKB() | |
assert kb.ask(A >> B) is False | |
assert kb.ask(A >> (B >> A)) is True | |
kb.tell(A >> B) | |
kb.tell(B >> C) | |
assert kb.ask(A) is False | |
assert kb.ask(B) is False | |
assert kb.ask(C) is False | |
assert kb.ask(~A) is False | |
assert kb.ask(~B) is False | |
assert kb.ask(~C) is False | |
assert kb.ask(A >> C) is True | |
kb.tell(A) | |
assert kb.ask(A) is True | |
assert kb.ask(B) is True | |
assert kb.ask(C) is True | |
assert kb.ask(~C) is False | |
kb.retract(A) | |
assert kb.ask(C) is False | |
def test_propKB_tolerant(): | |
""""tolerant to bad input""" | |
kb = PropKB() | |
A, B, C = symbols('A,B,C') | |
assert kb.ask(B) is False | |
def test_satisfiable_non_symbols(): | |
x, y = symbols('x y') | |
assumptions = Q.zero(x*y) | |
facts = Implies(Q.zero(x*y), Q.zero(x) | Q.zero(y)) | |
query = ~Q.zero(x) & ~Q.zero(y) | |
refutations = [ | |
{Q.zero(x): True, Q.zero(x*y): True}, | |
{Q.zero(y): True, Q.zero(x*y): True}, | |
{Q.zero(x): True, Q.zero(y): True, Q.zero(x*y): True}, | |
{Q.zero(x): True, Q.zero(y): False, Q.zero(x*y): True}, | |
{Q.zero(x): False, Q.zero(y): True, Q.zero(x*y): True}] | |
assert not satisfiable(And(assumptions, facts, query), algorithm='dpll') | |
assert satisfiable(And(assumptions, facts, ~query), algorithm='dpll') in refutations | |
assert not satisfiable(And(assumptions, facts, query), algorithm='dpll2') | |
assert satisfiable(And(assumptions, facts, ~query), algorithm='dpll2') in refutations | |
def test_satisfiable_bool(): | |
from sympy.core.singleton import S | |
assert satisfiable(true) == {true: true} | |
assert satisfiable(S.true) == {true: true} | |
assert satisfiable(false) is False | |
assert satisfiable(S.false) is False | |
def test_satisfiable_all_models(): | |
from sympy.abc import A, B | |
assert next(satisfiable(False, all_models=True)) is False | |
assert list(satisfiable((A >> ~A) & A, all_models=True)) == [False] | |
assert list(satisfiable(True, all_models=True)) == [{true: true}] | |
models = [{A: True, B: False}, {A: False, B: True}] | |
result = satisfiable(A ^ B, all_models=True) | |
models.remove(next(result)) | |
models.remove(next(result)) | |
raises(StopIteration, lambda: next(result)) | |
assert not models | |
assert list(satisfiable(Equivalent(A, B), all_models=True)) == \ | |
[{A: False, B: False}, {A: True, B: True}] | |
models = [{A: False, B: False}, {A: False, B: True}, {A: True, B: True}] | |
for model in satisfiable(A >> B, all_models=True): | |
models.remove(model) | |
assert not models | |
# This is a santiy test to check that only the required number | |
# of solutions are generated. The expr below has 2**100 - 1 models | |
# which would time out the test if all are generated at once. | |
from sympy.utilities.iterables import numbered_symbols | |
from sympy.logic.boolalg import Or | |
sym = numbered_symbols() | |
X = [next(sym) for i in range(100)] | |
result = satisfiable(Or(*X), all_models=True) | |
for i in range(10): | |
assert next(result) | |
def test_z3(): | |
z3 = import_module("z3") | |
if not z3: | |
skip("z3 not installed.") | |
A, B, C = symbols('A,B,C') | |
x, y, z = symbols('x,y,z') | |
assert z3_satisfiable((x >= 2) & (x < 1)) is False | |
assert z3_satisfiable( A & ~A ) is False | |
model = z3_satisfiable(A & (~A | B | C)) | |
assert bool(model) is True | |
assert model[A] is True | |
# test nonlinear function | |
assert z3_satisfiable((x ** 2 >= 2) & (x < 1) & (x > -1)) is False | |
def test_z3_vs_lra_dpll2(): | |
z3 = import_module("z3") | |
if z3 is None: | |
skip("z3 not installed.") | |
def boolean_formula_to_encoded_cnf(bf): | |
cnf = CNF.from_prop(bf) | |
enc = EncodedCNF() | |
enc.from_cnf(cnf) | |
return enc | |
def make_random_cnf(num_clauses=5, num_constraints=10, num_var=2): | |
assert num_clauses <= num_constraints | |
constraints = make_random_problem(num_variables=num_var, num_constraints=num_constraints, rational=False) | |
clauses = [[cons] for cons in constraints[:num_clauses]] | |
for cons in constraints[num_clauses:]: | |
if isinstance(cons, Unequality): | |
cons = ~cons | |
i = randint(0, num_clauses-1) | |
clauses[i].append(cons) | |
clauses = [Or(*clause) for clause in clauses] | |
cnf = And(*clauses) | |
return boolean_formula_to_encoded_cnf(cnf) | |
lra_dpll2_satisfiable = lambda x: dpll2_satisfiable(x, use_lra_theory=True) | |
for _ in range(50): | |
cnf = make_random_cnf(num_clauses=10, num_constraints=15, num_var=2) | |
try: | |
z3_sat = z3_satisfiable(cnf) | |
except z3.z3types.Z3Exception: | |
continue | |
lra_dpll2_sat = lra_dpll2_satisfiable(cnf) is not False | |
assert z3_sat == lra_dpll2_sat | |