Spaces:
Sleeping
Sleeping
from collections.abc import Callable | |
from sympy.core.containers import Dict | |
from sympy.utilities.exceptions import sympy_deprecation_warning | |
from sympy.utilities.iterables import is_sequence | |
from sympy.utilities.misc import as_int | |
from .matrixbase import MatrixBase | |
from .repmatrix import MutableRepMatrix, RepMatrix | |
from .utilities import _iszero | |
from .decompositions import ( | |
_liupc, _row_structure_symbolic_cholesky, _cholesky_sparse, | |
_LDLdecomposition_sparse) | |
from .solvers import ( | |
_lower_triangular_solve_sparse, _upper_triangular_solve_sparse) | |
class SparseRepMatrix(RepMatrix): | |
""" | |
A sparse matrix (a matrix with a large number of zero elements). | |
Examples | |
======== | |
>>> from sympy import SparseMatrix, ones | |
>>> SparseMatrix(2, 2, range(4)) | |
Matrix([ | |
[0, 1], | |
[2, 3]]) | |
>>> SparseMatrix(2, 2, {(1, 1): 2}) | |
Matrix([ | |
[0, 0], | |
[0, 2]]) | |
A SparseMatrix can be instantiated from a ragged list of lists: | |
>>> SparseMatrix([[1, 2, 3], [1, 2], [1]]) | |
Matrix([ | |
[1, 2, 3], | |
[1, 2, 0], | |
[1, 0, 0]]) | |
For safety, one may include the expected size and then an error | |
will be raised if the indices of any element are out of range or | |
(for a flat list) if the total number of elements does not match | |
the expected shape: | |
>>> SparseMatrix(2, 2, [1, 2]) | |
Traceback (most recent call last): | |
... | |
ValueError: List length (2) != rows*columns (4) | |
Here, an error is not raised because the list is not flat and no | |
element is out of range: | |
>>> SparseMatrix(2, 2, [[1, 2]]) | |
Matrix([ | |
[1, 2], | |
[0, 0]]) | |
But adding another element to the first (and only) row will cause | |
an error to be raised: | |
>>> SparseMatrix(2, 2, [[1, 2, 3]]) | |
Traceback (most recent call last): | |
... | |
ValueError: The location (0, 2) is out of designated range: (1, 1) | |
To autosize the matrix, pass None for rows: | |
>>> SparseMatrix(None, [[1, 2, 3]]) | |
Matrix([[1, 2, 3]]) | |
>>> SparseMatrix(None, {(1, 1): 1, (3, 3): 3}) | |
Matrix([ | |
[0, 0, 0, 0], | |
[0, 1, 0, 0], | |
[0, 0, 0, 0], | |
[0, 0, 0, 3]]) | |
Values that are themselves a Matrix are automatically expanded: | |
>>> SparseMatrix(4, 4, {(1, 1): ones(2)}) | |
Matrix([ | |
[0, 0, 0, 0], | |
[0, 1, 1, 0], | |
[0, 1, 1, 0], | |
[0, 0, 0, 0]]) | |
A ValueError is raised if the expanding matrix tries to overwrite | |
a different element already present: | |
>>> SparseMatrix(3, 3, {(0, 0): ones(2), (1, 1): 2}) | |
Traceback (most recent call last): | |
... | |
ValueError: collision at (1, 1) | |
See Also | |
======== | |
DenseMatrix | |
MutableSparseMatrix | |
ImmutableSparseMatrix | |
""" | |
def _handle_creation_inputs(cls, *args, **kwargs): | |
if len(args) == 1 and isinstance(args[0], MatrixBase): | |
rows = args[0].rows | |
cols = args[0].cols | |
smat = args[0].todok() | |
return rows, cols, smat | |
smat = {} | |
# autosizing | |
if len(args) == 2 and args[0] is None: | |
args = [None, None, args[1]] | |
if len(args) == 3: | |
r, c = args[:2] | |
if r is c is None: | |
rows = cols = None | |
elif None in (r, c): | |
raise ValueError( | |
'Pass rows=None and no cols for autosizing.') | |
else: | |
rows, cols = as_int(args[0]), as_int(args[1]) | |
if isinstance(args[2], Callable): | |
op = args[2] | |
if None in (rows, cols): | |
raise ValueError( | |
"{} and {} must be integers for this " | |
"specification.".format(rows, cols)) | |
row_indices = [cls._sympify(i) for i in range(rows)] | |
col_indices = [cls._sympify(j) for j in range(cols)] | |
for i in row_indices: | |
for j in col_indices: | |
value = cls._sympify(op(i, j)) | |
if value != cls.zero: | |
smat[i, j] = value | |
return rows, cols, smat | |
elif isinstance(args[2], (dict, Dict)): | |
def update(i, j, v): | |
# update smat and make sure there are no collisions | |
if v: | |
if (i, j) in smat and v != smat[i, j]: | |
raise ValueError( | |
"There is a collision at {} for {} and {}." | |
.format((i, j), v, smat[i, j]) | |
) | |
smat[i, j] = v | |
# manual copy, copy.deepcopy() doesn't work | |
for (r, c), v in args[2].items(): | |
if isinstance(v, MatrixBase): | |
for (i, j), vv in v.todok().items(): | |
update(r + i, c + j, vv) | |
elif isinstance(v, (list, tuple)): | |
_, _, smat = cls._handle_creation_inputs(v, **kwargs) | |
for i, j in smat: | |
update(r + i, c + j, smat[i, j]) | |
else: | |
v = cls._sympify(v) | |
update(r, c, cls._sympify(v)) | |
elif is_sequence(args[2]): | |
flat = not any(is_sequence(i) for i in args[2]) | |
if not flat: | |
_, _, smat = \ | |
cls._handle_creation_inputs(args[2], **kwargs) | |
else: | |
flat_list = args[2] | |
if len(flat_list) != rows * cols: | |
raise ValueError( | |
"The length of the flat list ({}) does not " | |
"match the specified size ({} * {})." | |
.format(len(flat_list), rows, cols) | |
) | |
for i in range(rows): | |
for j in range(cols): | |
value = flat_list[i*cols + j] | |
value = cls._sympify(value) | |
if value != cls.zero: | |
smat[i, j] = value | |
if rows is None: # autosizing | |
keys = smat.keys() | |
rows = max(r for r, _ in keys) + 1 if keys else 0 | |
cols = max(c for _, c in keys) + 1 if keys else 0 | |
else: | |
for i, j in smat.keys(): | |
if i and i >= rows or j and j >= cols: | |
raise ValueError( | |
"The location {} is out of the designated range" | |
"[{}, {}]x[{}, {}]" | |
.format((i, j), 0, rows - 1, 0, cols - 1) | |
) | |
return rows, cols, smat | |
elif len(args) == 1 and isinstance(args[0], (list, tuple)): | |
# list of values or lists | |
v = args[0] | |
c = 0 | |
for i, row in enumerate(v): | |
if not isinstance(row, (list, tuple)): | |
row = [row] | |
for j, vv in enumerate(row): | |
if vv != cls.zero: | |
smat[i, j] = cls._sympify(vv) | |
c = max(c, len(row)) | |
rows = len(v) if c else 0 | |
cols = c | |
return rows, cols, smat | |
else: | |
# handle full matrix forms with _handle_creation_inputs | |
rows, cols, mat = super()._handle_creation_inputs(*args) | |
for i in range(rows): | |
for j in range(cols): | |
value = mat[cols*i + j] | |
if value != cls.zero: | |
smat[i, j] = value | |
return rows, cols, smat | |
def _smat(self): | |
sympy_deprecation_warning( | |
""" | |
The private _smat attribute of SparseMatrix is deprecated. Use the | |
.todok() method instead. | |
""", | |
deprecated_since_version="1.9", | |
active_deprecations_target="deprecated-private-matrix-attributes" | |
) | |
return self.todok() | |
def _eval_inverse(self, **kwargs): | |
return self.inv(method=kwargs.get('method', 'LDL'), | |
iszerofunc=kwargs.get('iszerofunc', _iszero), | |
try_block_diag=kwargs.get('try_block_diag', False)) | |
def applyfunc(self, f): | |
"""Apply a function to each element of the matrix. | |
Examples | |
======== | |
>>> from sympy import SparseMatrix | |
>>> m = SparseMatrix(2, 2, lambda i, j: i*2+j) | |
>>> m | |
Matrix([ | |
[0, 1], | |
[2, 3]]) | |
>>> m.applyfunc(lambda i: 2*i) | |
Matrix([ | |
[0, 2], | |
[4, 6]]) | |
""" | |
if not callable(f): | |
raise TypeError("`f` must be callable.") | |
# XXX: This only applies the function to the nonzero elements of the | |
# matrix so is inconsistent with DenseMatrix.applyfunc e.g. | |
# zeros(2, 2).applyfunc(lambda x: x + 1) | |
dok = {} | |
for k, v in self.todok().items(): | |
fv = f(v) | |
if fv != 0: | |
dok[k] = fv | |
return self._new(self.rows, self.cols, dok) | |
def as_immutable(self): | |
"""Returns an Immutable version of this Matrix.""" | |
from .immutable import ImmutableSparseMatrix | |
return ImmutableSparseMatrix(self) | |
def as_mutable(self): | |
"""Returns a mutable version of this matrix. | |
Examples | |
======== | |
>>> from sympy import ImmutableMatrix | |
>>> X = ImmutableMatrix([[1, 2], [3, 4]]) | |
>>> Y = X.as_mutable() | |
>>> Y[1, 1] = 5 # Can set values in Y | |
>>> Y | |
Matrix([ | |
[1, 2], | |
[3, 5]]) | |
""" | |
return MutableSparseMatrix(self) | |
def col_list(self): | |
"""Returns a column-sorted list of non-zero elements of the matrix. | |
Examples | |
======== | |
>>> from sympy import SparseMatrix | |
>>> a=SparseMatrix(((1, 2), (3, 4))) | |
>>> a | |
Matrix([ | |
[1, 2], | |
[3, 4]]) | |
>>> a.CL | |
[(0, 0, 1), (1, 0, 3), (0, 1, 2), (1, 1, 4)] | |
See Also | |
======== | |
sympy.matrices.sparse.SparseMatrix.row_list | |
""" | |
return [tuple(k + (self[k],)) for k in sorted(self.todok().keys(), key=lambda k: list(reversed(k)))] | |
def nnz(self): | |
"""Returns the number of non-zero elements in Matrix.""" | |
return len(self.todok()) | |
def row_list(self): | |
"""Returns a row-sorted list of non-zero elements of the matrix. | |
Examples | |
======== | |
>>> from sympy import SparseMatrix | |
>>> a = SparseMatrix(((1, 2), (3, 4))) | |
>>> a | |
Matrix([ | |
[1, 2], | |
[3, 4]]) | |
>>> a.RL | |
[(0, 0, 1), (0, 1, 2), (1, 0, 3), (1, 1, 4)] | |
See Also | |
======== | |
sympy.matrices.sparse.SparseMatrix.col_list | |
""" | |
return [tuple(k + (self[k],)) for k in | |
sorted(self.todok().keys(), key=list)] | |
def scalar_multiply(self, scalar): | |
"Scalar element-wise multiplication" | |
return scalar * self | |
def solve_least_squares(self, rhs, method='LDL'): | |
"""Return the least-square fit to the data. | |
By default the cholesky_solve routine is used (method='CH'); other | |
methods of matrix inversion can be used. To find out which are | |
available, see the docstring of the .inv() method. | |
Examples | |
======== | |
>>> from sympy import SparseMatrix, Matrix, ones | |
>>> A = Matrix([1, 2, 3]) | |
>>> B = Matrix([2, 3, 4]) | |
>>> S = SparseMatrix(A.row_join(B)) | |
>>> S | |
Matrix([ | |
[1, 2], | |
[2, 3], | |
[3, 4]]) | |
If each line of S represent coefficients of Ax + By | |
and x and y are [2, 3] then S*xy is: | |
>>> r = S*Matrix([2, 3]); r | |
Matrix([ | |
[ 8], | |
[13], | |
[18]]) | |
But let's add 1 to the middle value and then solve for the | |
least-squares value of xy: | |
>>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy | |
Matrix([ | |
[ 5/3], | |
[10/3]]) | |
The error is given by S*xy - r: | |
>>> S*xy - r | |
Matrix([ | |
[1/3], | |
[1/3], | |
[1/3]]) | |
>>> _.norm().n(2) | |
0.58 | |
If a different xy is used, the norm will be higher: | |
>>> xy += ones(2, 1)/10 | |
>>> (S*xy - r).norm().n(2) | |
1.5 | |
""" | |
t = self.T | |
return (t*self).inv(method=method)*t*rhs | |
def solve(self, rhs, method='LDL'): | |
"""Return solution to self*soln = rhs using given inversion method. | |
For a list of possible inversion methods, see the .inv() docstring. | |
""" | |
if not self.is_square: | |
if self.rows < self.cols: | |
raise ValueError('Under-determined system.') | |
elif self.rows > self.cols: | |
raise ValueError('For over-determined system, M, having ' | |
'more rows than columns, try M.solve_least_squares(rhs).') | |
else: | |
return self.inv(method=method).multiply(rhs) | |
RL = property(row_list, None, None, "Alternate faster representation") | |
CL = property(col_list, None, None, "Alternate faster representation") | |
def liupc(self): | |
return _liupc(self) | |
def row_structure_symbolic_cholesky(self): | |
return _row_structure_symbolic_cholesky(self) | |
def cholesky(self, hermitian=True): | |
return _cholesky_sparse(self, hermitian=hermitian) | |
def LDLdecomposition(self, hermitian=True): | |
return _LDLdecomposition_sparse(self, hermitian=hermitian) | |
def lower_triangular_solve(self, rhs): | |
return _lower_triangular_solve_sparse(self, rhs) | |
def upper_triangular_solve(self, rhs): | |
return _upper_triangular_solve_sparse(self, rhs) | |
liupc.__doc__ = _liupc.__doc__ | |
row_structure_symbolic_cholesky.__doc__ = _row_structure_symbolic_cholesky.__doc__ | |
cholesky.__doc__ = _cholesky_sparse.__doc__ | |
LDLdecomposition.__doc__ = _LDLdecomposition_sparse.__doc__ | |
lower_triangular_solve.__doc__ = lower_triangular_solve.__doc__ | |
upper_triangular_solve.__doc__ = upper_triangular_solve.__doc__ | |
class MutableSparseMatrix(SparseRepMatrix, MutableRepMatrix): | |
def _new(cls, *args, **kwargs): | |
rows, cols, smat = cls._handle_creation_inputs(*args, **kwargs) | |
rep = cls._smat_to_DomainMatrix(rows, cols, smat) | |
return cls._fromrep(rep) | |
SparseMatrix = MutableSparseMatrix | |