Kano001's picture
Upload 2707 files
dc2106c verified
raw
history blame
43.7 kB
// Copyright (c) ONNX Project Contributors
//
// SPDX-License-Identifier: Apache-2.0
#include "onnx/shape_inference/implementation.h"
#include <algorithm>
#include <fstream>
#include <list>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "onnx/checker.h"
#include "onnx/common/common.h"
#include "onnx/common/file_utils.h"
#include "onnx/defs/data_type_utils.h"
#include "onnx/proto_utils.h"
#include "onnx/shape_inference/attribute_binder.h"
#include "onnx/string_utils.h"
namespace ONNX_NAMESPACE {
namespace shape_inference {
namespace {
std::string GetValueCaseString(const TypeProto& type) {
switch (type.value_case()) {
case TypeProto::ValueCase::kTensorType:
return "tensor_type";
case TypeProto::ValueCase::kSequenceType:
return "sequence_type";
case TypeProto::ValueCase::kMapType:
return "map_type";
case TypeProto::ValueCase::kOptionalType:
return "optional_type";
#ifdef ONNX_ML
case TypeProto::ValueCase::kOpaqueType:
return "opaque_type";
#endif
case TypeProto::ValueCase::kSparseTensorType:
return "sparse_tensor_type";
case TypeProto::ValueCase::VALUE_NOT_SET:
return "NOT_SET";
}
return ONNX_NAMESPACE::to_string(type.value_case());
}
std::string GetElemTypeString(const TypeProto_Tensor& type) {
#ifndef ONNX_USE_LITE_PROTO
std::string type_str = TensorProto::DataType_Name(static_cast<TensorProto_DataType>(type.elem_type()));
if (!type_str.empty()) {
return type_str;
}
#endif
return ONNX_NAMESPACE::to_string(type.elem_type());
}
std::string GetElemTypeString(const TypeProto_SparseTensor& type) {
#ifndef ONNX_USE_LITE_PROTO
std::string type_str = TensorProto::DataType_Name(static_cast<TensorProto_DataType>(type.elem_type()));
if (!type_str.empty()) {
return type_str;
}
#endif
return ONNX_NAMESPACE::to_string(type.elem_type());
}
inline bool IsOnnxDomainOp(const NodeProto& node, const std::string& op_type) {
return (IsOnnxDomain(node.domain()) && (node.op_type() == op_type));
}
} // namespace
template <class T>
void CheckTensorShapesAndTypes(const T& inferred_type, const T& existing_type) {
if (inferred_type.elem_type() != TensorProto::UNDEFINED && existing_type.elem_type() != TensorProto::UNDEFINED &&
existing_type.elem_type() != inferred_type.elem_type()) {
std::stringstream ss;
ss << "Inferred elem type differs from existing elem type: (" << GetElemTypeString(inferred_type) << ") vs ("
<< GetElemTypeString(existing_type) << ")";
fail_type_inference(ss.str());
}
if (!inferred_type.has_shape() || !existing_type.has_shape()) {
return;
}
if (inferred_type.shape().dim_size() != existing_type.shape().dim_size()) {
std::stringstream ss;
ss << "Inferred shape and existing shape differ in rank: (" << inferred_type.shape().dim_size() << ") vs ("
<< existing_type.shape().dim_size() << ")";
fail_shape_inference(ss.str());
}
for (int i = 0; i < inferred_type.shape().dim_size(); ++i) {
const auto& inferred_dim = inferred_type.shape().dim(i);
const auto& existing_dim = existing_type.shape().dim(i);
if (inferred_dim.has_dim_value() && existing_dim.has_dim_value() &&
inferred_dim.dim_value() != existing_dim.dim_value()) {
std::stringstream ss;
ss << "Inferred shape and existing shape differ in dimension " << i << ": (" << inferred_dim.dim_value()
<< ") vs (" << existing_dim.dim_value() << ")";
fail_shape_inference(ss.str());
}
}
}
void checkShapesAndTypes(const TypeProto& inferred_type, const TypeProto& existing_type) {
const auto inferred_value_case = inferred_type.value_case();
const auto existing_value_case = existing_type.value_case();
if (inferred_value_case == TypeProto::ValueCase::VALUE_NOT_SET ||
existing_value_case == TypeProto::ValueCase::VALUE_NOT_SET) {
// nothing to check; will assign inferredType to undefined existingType
return;
}
if (inferred_value_case != existing_value_case) {
fail_type_inference(
"type case mismatch. existing=",
GetValueCaseString(existing_type),
" inferred=",
GetValueCaseString(inferred_type));
}
if (inferred_value_case == TypeProto::kTensorType && existing_value_case == TypeProto::kTensorType) {
CheckTensorShapesAndTypes(inferred_type.tensor_type(), existing_type.tensor_type());
} else if (
inferred_value_case == TypeProto::kSparseTensorType && existing_value_case == TypeProto::kSparseTensorType) {
CheckTensorShapesAndTypes(inferred_type.sparse_tensor_type(), existing_type.sparse_tensor_type());
} else if (inferred_value_case == TypeProto::kSequenceType && existing_value_case == TypeProto::kSequenceType) {
checkShapesAndTypes(inferred_type.sequence_type().elem_type(), existing_type.sequence_type().elem_type());
} else if (inferred_value_case == TypeProto::kOptionalType && existing_value_case == TypeProto::kOptionalType) {
checkShapesAndTypes(inferred_type.optional_type().elem_type(), existing_type.optional_type().elem_type());
} else if (
inferred_value_case == TypeProto::TypeProto::kMapType && existing_value_case == TypeProto::TypeProto::kMapType) {
if (inferred_type.map_type().key_type() != existing_type.map_type().key_type()) {
fail_type_inference(
"key type mismatch from MapProto. existing=",
Utils::DataTypeUtils::ToDataTypeString(existing_type.map_type().key_type()),
" inferred=",
Utils::DataTypeUtils::ToDataTypeString(inferred_type.map_type().key_type()));
}
checkShapesAndTypes(inferred_type.map_type().value_type(), existing_type.map_type().value_type());
} else {
fail_type_inference("type case unsupported. existing=", existing_value_case, " inferred=", inferred_value_case);
}
}
void mergeShapesAndTypes(const TypeProto_Tensor& inferred_type, TypeProto_Tensor* existing_type) {
if (existing_type->elem_type() == TensorProto::UNDEFINED) {
existing_type->set_elem_type(inferred_type.elem_type());
}
if (!inferred_type.has_shape()) {
return;
}
if (!existing_type->has_shape()) {
*existing_type->mutable_shape() = inferred_type.shape();
return;
}
for (int i = 0; i < inferred_type.shape().dim_size(); ++i) {
const auto& inferred_dim = inferred_type.shape().dim(i);
auto* existing_dim = existing_type->mutable_shape()->mutable_dim(i);
if ((!existing_dim->has_dim_value() && !existing_dim->has_dim_param()) || inferred_dim.has_dim_value()) {
*existing_dim = inferred_dim;
}
}
}
void mergeShapesAndTypes(const TypeProto_SparseTensor& inferred_type, TypeProto_SparseTensor* existing_type) {
if (existing_type->elem_type() == TensorProto::UNDEFINED) {
existing_type->set_elem_type(inferred_type.elem_type());
}
if (!inferred_type.has_shape()) {
return;
}
if (!existing_type->has_shape()) {
*existing_type->mutable_shape() = inferred_type.shape();
return;
}
for (int i = 0; i < inferred_type.shape().dim_size(); ++i) {
const auto& inferred_dim = inferred_type.shape().dim(i);
auto* existing_dim = existing_type->mutable_shape()->mutable_dim(i);
if ((!existing_dim->has_dim_value() && !existing_dim->has_dim_param()) || inferred_dim.has_dim_value()) {
*existing_dim = inferred_dim;
}
}
}
void mergeShapesAndTypes(const TypeProto& inferred_type, TypeProto* existing_type) {
// Check before merge
checkShapesAndTypes(inferred_type, *existing_type);
const auto inferred_val_case = inferred_type.value_case();
if (inferred_val_case == TypeProto::kTensorType) {
mergeShapesAndTypes(inferred_type.tensor_type(), existing_type->mutable_tensor_type());
} else if (inferred_val_case == TypeProto::kSparseTensorType) {
mergeShapesAndTypes(inferred_type.sparse_tensor_type(), existing_type->mutable_sparse_tensor_type());
} else if (inferred_val_case == TypeProto::kSequenceType) {
mergeShapesAndTypes(
inferred_type.sequence_type().elem_type(), existing_type->mutable_sequence_type()->mutable_elem_type());
} else if (inferred_val_case == TypeProto::kOptionalType) {
mergeShapesAndTypes(
inferred_type.optional_type().elem_type(), existing_type->mutable_optional_type()->mutable_elem_type());
} else if (inferred_val_case == TypeProto::kMapType) {
if (existing_type->map_type().key_type() == TensorProto::UNDEFINED) {
existing_type->mutable_map_type()->set_key_type(inferred_type.map_type().key_type());
}
mergeShapesAndTypes(inferred_type.map_type().value_type(), existing_type->mutable_map_type()->mutable_value_type());
}
}
// TypeProto_Tensor or TypeProto_SparseTensor
template <typename TensorTypeProto>
void GenerateSymbolicShape(TensorTypeProto* inferred_type, SymbolTable& symbol_table) {
if (!inferred_type->has_shape()) {
return;
}
for (int i = 0; i < inferred_type->shape().dim_size(); ++i) {
// set a symbol if it doesn't have dim_value and dim_param
auto* dim = inferred_type->mutable_shape()->mutable_dim(i);
if (!dim->has_dim_value() && !dim->has_dim_param()) {
dim->set_dim_param(symbol_table.createNew());
}
}
}
void MaterializeSymbolicShape(TypeProto* inferred_type, SymbolTable& symbol_table) {
const auto inferred_val_case = inferred_type->value_case();
if (inferred_val_case == TypeProto::ValueCase::VALUE_NOT_SET) {
return;
}
if (inferred_val_case == TypeProto::kTensorType) {
GenerateSymbolicShape(inferred_type->mutable_tensor_type(), symbol_table);
} else if (inferred_val_case == TypeProto::kSparseTensorType) {
GenerateSymbolicShape(inferred_type->mutable_sparse_tensor_type(), symbol_table);
} else if (inferred_val_case == TypeProto::kSequenceType) {
MaterializeSymbolicShape(inferred_type->mutable_sequence_type()->mutable_elem_type(), symbol_table);
} else if (inferred_val_case == TypeProto::kOptionalType) {
MaterializeSymbolicShape(inferred_type->mutable_optional_type()->mutable_elem_type(), symbol_table);
} else if (inferred_val_case == TypeProto::kMapType) {
MaterializeSymbolicShape(inferred_type->mutable_map_type()->mutable_value_type(), symbol_table);
} else {
fail_shape_inference("type case unsupported for symbolic shape inference. inferred=", inferred_val_case);
}
}
std::string GetFunctionIdentifier(const FunctionProto& function) {
// Note: Models with IR version < 10 do not have the overload attribute.
// However, that will be mapped to an empty identifier.
std::string overload = function.overload();
if (overload.empty()) {
return function.domain() + ":" + function.name();
}
return function.domain() + ":" + function.name() + ":" + overload;
}
std::string GetFunctionIdentifier(const NodeProto& node) {
// Note: Models with IR version < 10 do not have the overload attribute.
// However, that will be mapped to an empty identifier.
std::string overload = node.overload();
if (overload.empty()) {
return node.domain() + ":" + node.op_type();
}
return node.domain() + ":" + node.op_type() + ":" + overload;
}
// InferredTypes: abstracts the differences between FunctionProto and GraphProto
// for inference. For GraphProto, inferred types are stored in the GraphProto
// but FunctionProto does not have a place to store inferred types. So, we
// use a temporary vector (for the duration of inference) to store these.
class InferredTypes {
public:
explicit InferredTypes(GraphProto* graph = nullptr) : graph_ptr(graph) {}
TypeProto* Add(const std::string& var_name, const TypeProto& type) {
if (graph_ptr != nullptr) {
auto* p = graph_ptr->add_value_info();
p->set_name(var_name);
*p->mutable_type() = type;
return p->mutable_type();
} else {
auto* p = new TypeProto(type);
types.push_back(p);
return p;
}
}
~InferredTypes() {
for (auto* p : types) {
delete p;
}
}
private:
std::vector<TypeProto*> types;
GraphProto* graph_ptr;
ONNX_DISALLOW_COPY_ASSIGNMENT_AND_MOVE(InferredTypes);
};
// Initialize a DataValueMap for a called function from the DataValueMap of the caller
void BindValuesOnCall(
const DataValueMap& caller_map,
const NodeProto& caller,
DataValueMap& callee_map,
const FunctionProto& callee) {
auto num_inputs = (std::min)(caller.input_size(), callee.input_size());
for (int i = 0; i < num_inputs; ++i) {
const std::string& actual = caller.input(i);
const std::string& formal = callee.input(i);
if (!actual.empty()) {
auto it = caller_map.find(actual);
if (it != caller_map.end()) {
callee_map[formal] = it->second;
}
}
}
}
// Update a DataValueMap for a calling function from the DataValueMap of the callee
void BindValuesOnReturn(
const DataValueMap& callee_map,
const FunctionProto& callee,
DataValueMap& caller_map,
const NodeProto& caller) {
auto num_outputs = (std::min)(caller.output_size(), callee.output_size());
for (int i = 0; i < num_outputs; ++i) {
const std::string& actual = caller.output(i);
const std::string& formal = callee.output(i);
if (!actual.empty()) {
auto it = callee_map.find(formal);
if (it != callee_map.end()) {
caller_map[actual] = it->second;
}
}
}
}
class ShapeInferenceImplBase {
public:
void UpdateType(const std::string& name, TypeProto* inferred_type) {
if (inferred_type->value_case() == TypeProto::ValueCase::VALUE_NOT_SET) {
return;
}
if (symbol_table) {
MaterializeSymbolicShape(inferred_type, *symbol_table);
}
// Find any pre-existing type and shape info. If there is such,
// then check for compatibility with the inferred
// information. Otherwise, initialize it in an empty state.
auto iter = value_types_by_name.find(name);
if (iter != value_types_by_name.end()) {
mergeShapesAndTypes(*inferred_type, iter->second);
} else {
value_types_by_name[name] = inferred_types.Add(name, *inferred_type);
// For undefined output type, update both value_info and output for now
// Update existing output with undefined type: assign inferred type to it
iter = undefined_value_types_by_name.find(name);
if (iter != undefined_value_types_by_name.end()) {
*iter->second = *inferred_type;
}
}
}
void UpdateType(ValueInfoProto& valueInfo) {
if (valueInfo.has_type()) {
value_types_by_name[valueInfo.name()] = valueInfo.mutable_type();
} else {
undefined_value_types_by_name[valueInfo.name()] = valueInfo.mutable_type();
}
}
template <typename T>
void AddTemporaryConstant(const std::string& name, const T& vector) {
input_data_by_name_holder[name] = ToTensor(vector);
input_data_by_name[name] = &input_data_by_name_holder[name];
}
void ProcessConstant(const NodeProto& n) {
if (IsOnnxDomainOp(n, "Constant") && n.output().size() == 1) {
const std::string& output_name = n.output(0);
for (const auto& attr : n.attribute()) {
if (attr.name() == "value") {
if (attr.type() == AttributeProto::TENSOR && attr.has_t()) {
if (reuse_constant_tensors) {
input_data_by_name[output_name] = &attr.t();
} else {
input_data_by_name_holder[output_name] = attr.t();
input_data_by_name[output_name] = &input_data_by_name_holder[output_name];
}
} else if (attr.type() == AttributeProto::SPARSE_TENSOR && attr.has_sparse_tensor()) {
if (reuse_constant_tensors) {
input_sparse_data_by_name[output_name] = &attr.sparse_tensor();
}
}
} else {
switch (attr.type()) {
case AttributeProto::INTS: {
std::vector<int64_t> ints{attr.ints().begin(), attr.ints().end()};
AddTemporaryConstant(output_name, ints);
break;
}
case AttributeProto::INT: {
std::vector<int64_t> ints({attr.i()});
AddTemporaryConstant(output_name, ints);
break;
}
case AttributeProto::FLOATS: {
std::vector<float> floats{attr.floats().begin(), attr.floats().end()};
AddTemporaryConstant(output_name, floats);
break;
}
case AttributeProto::FLOAT: {
std::vector<float> floats({attr.f()});
AddTemporaryConstant(output_name, floats);
break;
}
default:
break;
}
}
}
}
}
void ProcessCall(const NodeProto& caller, const FunctionProto& callee, InferenceContext& ctx) {
DataValueMap callee_value_map;
if (generated_shape_data_by_name != nullptr) {
BindValuesOnCall(*generated_shape_data_by_name, caller, callee_value_map, callee);
}
InferShapeForFunctionNode(
callee, schema_registry, ctx, options, model_local_functions_map, symbol_table, &callee_value_map);
if (generated_shape_data_by_name != nullptr) {
BindValuesOnReturn(callee_value_map, callee, *generated_shape_data_by_name, caller);
}
}
void Process(NodeProto& n) {
// Resolve domain for node
auto dit = opset_imports.find(n.domain());
if (dit == opset_imports.end()) {
// Both "" (ONNX_DOMAIN) and "ai.onnx" (AI_ONNX_DOMAIN) refer to the default ONNX domain
if (n.domain() == ONNX_DOMAIN) {
dit = opset_imports.find(AI_ONNX_DOMAIN);
}
if (dit == opset_imports.end()) {
fail_type_inference(
"Cannot infer type and shape for node name ",
n.name(),
". No opset import for domain ",
n.domain(),
" optype ",
n.op_type());
}
}
auto domain_version = dit->second;
const auto schema = schema_registry->GetSchema(n.op_type(), domain_version, n.domain());
InferenceContextImpl ctx(
n,
value_types_by_name,
input_data_by_name,
input_sparse_data_by_name,
options,
generated_shape_data_by_name,
&graph_inference_context);
ONNX_TRY {
if (schema) {
if (schema->has_type_and_shape_inference_function()) {
schema->GetTypeAndShapeInferenceFunction()(ctx);
} else if (schema->HasFunction()) {
ProcessCall(n, *(schema->GetFunction()), ctx);
} // else: rely on schema->CheckInputOutputType() down below.
// check type-constraints specified via type variables
if (options.check_type) {
schema->CheckInputOutputType(ctx);
}
} else if (model_local_functions_map.size() > 0) {
auto iter = model_local_functions_map.find(GetFunctionIdentifier(n));
if (iter != model_local_functions_map.end()) {
ProcessCall(n, *(iter->second), ctx);
} else {
has_unsupported_op = true;
return;
}
} else {
has_unsupported_op = true;
return;
}
for (int i = 0; i < n.output_size(); ++i) {
// skip type and shape propagation for missing optional outputs.
if (!n.output(i).empty())
UpdateType(n.output(i), ctx.getOutputType(i));
}
// Constant values are tracked to improve inference/checking for subsequent nodes.
ProcessConstant(n);
// If data-propagation is enabled, partial-evaluation (aka data-propagation) is performed
// to improve inference/checking for subsequent nodes.
if (options.enable_data_propagation && schema && schema->has_data_propagation_function()) {
if (generated_shape_data_by_name == nullptr) {
fail_shape_inference(
"Container for generated shape data cannot be nullptr when enable_data_propagation option is set.");
}
DataPropagationContextImpl data_propagation_ctx(
n, value_types_by_name, input_data_by_name, *generated_shape_data_by_name);
schema->GetDataPropagationFunction()(data_propagation_ctx);
}
}
ONNX_CATCH(const ONNX_NAMESPACE::InferenceError& ex) {
ONNX_HANDLE_EXCEPTION([&]() {
// Note: The following special handling is to accommodate custom-ops. Ideally, custom-ops
// should be registered with a schema in the schema registry, allowing inference to handle
// them. As things stand, this special handling is somewhat fragile and is not fully
// general either. Eg., a custom-op suppresses error-messages for subsequent nodes, but
// this does not work across graphs. If special handling is required, a user-option may
// be a better way to do it. The fragility comes from the fact that the types of the
// returned-values of the custom-op are unknown, and subsequent node-level inference
// may fail because of this.
if (!has_unsupported_op) {
inference_errors.push_back(GetErrorWithNodeInfo(n, ex));
}
});
}
ONNX_CATCH(const std::runtime_error& err) {
// TODO: Fix this. Unclear if this should be remapped to a shape inference error.
// Need to rationalize the different types of exceptions that can be thrown.
// See: https://github.com/onnx/onnx/pull/5519
ONNX_HANDLE_EXCEPTION([&]() { fail_shape_inference(GetErrorWithNodeInfo(n, err)); });
}
}
// TypeProto_Tensor or TypeProto_SparseTensor
template <typename T>
void ProcessInitializer(
const std::string& name,
const T& tensorValue,
TypeProto& initializer_type,
std::unordered_map<std::string, const T*>& map) {
map[name] = &tensorValue;
auto iter = value_types_by_name.find(name);
// If it already exists in input, check input and initializer is sync
// use shape info from input (input has priority over initializer)
if (iter != value_types_by_name.end()) {
checkShapesAndTypes(initializer_type, *iter->second);
// CheckTensorShapesAndTypes(*initializer_tensor_type, *iter->second->mutable_tensor_type());
}
// Support IR>=4: some tensors can only exist in initializer and not in input
// So shape_inference should make use of initializer shapes
// Store initializer shape info in value_info as well
else if (ir_version >= 4) {
initializer_type_list.push_back(std::move(initializer_type));
value_types_by_name[name] = &initializer_type_list.back();
}
}
void Process(GraphProto& graph) {
if (symbol_table) {
TraverseGraphsToAddExistingSymbols(graph, *symbol_table);
}
for (auto& vi : *graph.mutable_value_info()) {
UpdateType(vi);
}
for (auto& vi : *graph.mutable_input()) {
UpdateType(vi);
}
for (auto& vi : *graph.mutable_output()) {
UpdateType(vi);
}
for (const auto& tp : graph.initializer()) {
TypeProto initializer_type;
TypeProto_Tensor* initializer_tensor_type = initializer_type.mutable_tensor_type();
initializer_tensor_type->set_elem_type(tp.data_type());
// set the shape according to the initializer shape info
auto* shape = initializer_tensor_type->mutable_shape();
for (int i = 0; i < tp.dims_size(); ++i) {
shape->add_dim()->set_dim_value(tp.dims(i));
}
ProcessInitializer(tp.name(), tp, initializer_type, input_data_by_name);
}
for (const auto& tp : graph.sparse_initializer()) {
TypeProto initializer_type;
auto* initializer_sparse_tensor_type = initializer_type.mutable_sparse_tensor_type();
initializer_sparse_tensor_type->set_elem_type(tp.values().data_type());
// set the shape according to the initializer shape info
auto* shape = initializer_sparse_tensor_type->mutable_shape();
for (int i = 0; i < tp.dims_size(); ++i) {
shape->add_dim()->set_dim_value(tp.dims(i));
}
ProcessInitializer(tp.values().name(), tp, initializer_type, input_sparse_data_by_name);
}
for (auto& n : *graph.mutable_node()) {
Process(n);
}
}
void Process(const NodeProto& n, internal::AttributeBinder& attribute_binder) {
NodeProto copy_n(n);
attribute_binder.VisitNode(&copy_n);
Process(copy_n);
}
void Process(const FunctionProto& func_proto, InferenceContext& ctx) {
// Ensure Constant node tensor-attributes are copied
bool old_reuse_constant_tensors = reuse_constant_tensors;
reuse_constant_tensors = false;
// Get a temporary tensor-shape map
const int num_actual_inputs = static_cast<int>(ctx.getNumInputs());
const auto num_func_inputs = func_proto.input_size();
std::vector<TypeProto> types_cache(num_func_inputs);
for (int i = 0; i < num_func_inputs; ++i) {
auto& parameter_name = func_proto.input().Get(i);
auto* type_ptr = (i < num_actual_inputs) ? ctx.getInputType(i) : nullptr;
// nullptr is valid, and indicates a missing optional input
if (type_ptr != nullptr) {
// Use a temporary copy of original type.
// TODO: investigate whether we can eliminate use of temporary copy
types_cache[i] = *type_ptr;
value_types_by_name[parameter_name] = &types_cache[i];
} else
value_types_by_name[parameter_name] = nullptr;
}
// Create a temporary initializer value map
for (int i = 0; i < num_actual_inputs && i < num_func_inputs; ++i) {
const TypeProto* type = ctx.getInputType(i);
if (type != nullptr) {
if (type->value_case() == TypeProto::kTensorType && ctx.getInputData(i) != nullptr) {
input_data_by_name[func_proto.input().Get(i)] = ctx.getInputData(i);
} else if (type->value_case() == TypeProto::kSparseTensorType && ctx.getInputSparseData(i) != nullptr) {
input_sparse_data_by_name[func_proto.input().Get(i)] = ctx.getInputSparseData(i);
}
}
}
std::unordered_map<std::string, const AttributeProto*> attr_map;
for (auto& attr : func_proto.attribute()) {
if (ctx.getAttribute(attr) != nullptr) {
attr_map[attr] = ctx.getAttribute(attr);
}
}
for (auto& default_value : func_proto.attribute_proto()) {
const std::string& name = default_value.name();
const AttributeProto* value = ctx.getAttribute(name);
attr_map[name] = (value != nullptr) ? value : &default_value;
}
internal::AttributeBinder attribute_binder(attr_map);
for (auto& n : func_proto.node()) {
Process(n, attribute_binder);
}
for (int i = 0; i < func_proto.output_size(); ++i) {
const std::string& output_name = func_proto.output().Get(i);
// Skip if no type inferred for the tensor
auto iter = value_types_by_name.find(output_name);
if (iter != value_types_by_name.cend()) {
// Copy the type info to ctx
// to pass back to main graph
auto type_proto = ctx.getOutputType(i);
type_proto->CopyFrom(*(iter->second));
}
}
reuse_constant_tensors = old_reuse_constant_tensors;
}
public:
ShapeInferenceImplBase(
GraphProto* graph, // nullptr for FunctionProto inference
const std::unordered_map<std::string, TypeProto*>& outer_scope_value_types_by_name_in,
const std::unordered_map<std::string, int>& opset_imports_in,
const ShapeInferenceOptions& options_in,
SymbolTable* symbol_table_in,
const ModelLocalFunctionsMap& model_local_functions_map_in,
const ISchemaRegistry* schema_registry_in = OpSchemaRegistry::Instance(),
DataValueMap* generated_shape_data_by_name_in = nullptr,
const int ir_version_in = IR_VERSION // default the latest one
)
: inferred_types(graph),
value_types_by_name(outer_scope_value_types_by_name_in),
opset_imports(opset_imports_in),
options(options_in),
symbol_table(symbol_table_in),
model_local_functions_map(model_local_functions_map_in),
schema_registry(schema_registry_in),
generated_shape_data_by_name(generated_shape_data_by_name_in),
ir_version(ir_version_in),
graph_inference_context{
value_types_by_name,
opset_imports,
symbol_table,
model_local_functions_map,
schema_registry,
generated_shape_data_by_name,
ir_version} {
if (options.enable_data_propagation && generated_shape_data_by_name == nullptr) {
fail_shape_inference(
"Container for generated shape data cannot be nullptr when enable_data_propagation option is set.");
}
}
void FinalizeShapeInference() {
auto& errors = getErrors();
// Throw shape inference error if any. Error mode right now only supports 0 and 1.
// When set to 0, any node level shape inference errors are not thrown. This is to support backward compatiblity
// with 1.7 and earlier releases. When set to 1 it will throw all exceptions.
// TODO: Add a more granular way for exception handling.
if (!errors.empty() && options.error_mode > 0) {
std::string full_errors = "Inference error(s): ";
for (const std::string& error : inference_errors) {
full_errors += error + "\n";
}
fail_shape_inference(full_errors);
}
}
const std::vector<std::string>& getErrors() const {
return inference_errors;
}
private:
InferredTypes inferred_types;
std::unordered_map<std::string, TypeProto*> value_types_by_name;
const std::unordered_map<std::string, int>& opset_imports;
const ShapeInferenceOptions& options;
SymbolTable* symbol_table;
const ModelLocalFunctionsMap& model_local_functions_map;
const ISchemaRegistry* schema_registry;
DataValueMap* generated_shape_data_by_name;
int ir_version;
GraphInferenceContext graph_inference_context;
std::unordered_map<std::string, TypeProto*> undefined_value_types_by_name;
std::unordered_map<std::string, const TensorProto*> input_data_by_name;
std::unordered_map<std::string, TensorProto> input_data_by_name_holder;
std::unordered_map<std::string, const SparseTensorProto*> input_sparse_data_by_name;
bool has_unsupported_op = false;
std::vector<std::string> inference_errors;
std::list<TypeProto> initializer_type_list;
// reuse_constant_tensors: controls whether we need to copy tensors occurring as attributes
// in Constant nodes. We avoid it for inference for graphs, but must make a copy for functions.
bool reuse_constant_tensors = true;
};
static void InferShapesImpl(
GraphProto* g,
const std::unordered_map<std::string, TypeProto*>& outer_scope_value_types_by_name,
const std::unordered_map<std::string, int>& opset_imports,
const ShapeInferenceOptions& options,
SymbolTable* symbol_table,
const ModelLocalFunctionsMap& model_local_functions_map,
const ISchemaRegistry* schema_registry = OpSchemaRegistry::Instance(),
DataValueMap* generated_shape_data_by_name = nullptr,
const int ir_version = IR_VERSION // default the latest one
) {
DataValueMap empty;
if (generated_shape_data_by_name == nullptr) {
generated_shape_data_by_name = &empty;
}
ShapeInferenceImplBase base(
g,
outer_scope_value_types_by_name,
opset_imports,
options,
symbol_table,
model_local_functions_map,
schema_registry,
generated_shape_data_by_name,
ir_version);
base.Process(*g);
base.FinalizeShapeInference();
}
// Either ModelProto or FunctionProto
template <class T>
std::unordered_map<std::string, int> GetOpsetImportsFromProto(const T& proto) {
std::unordered_map<std::string, int> opset_imports;
for (const auto& opset_import : proto.opset_import()) {
opset_imports[opset_import.domain()] = static_cast<int>(opset_import.version());
}
return opset_imports;
}
void InferShapes(
GraphProto* g,
const std::unordered_map<std::string, int>& opset_imports,
const ISchemaRegistry* schema_registry,
const ShapeInferenceOptions& options,
const std::unordered_map<std::string, const FunctionProto*>& model_local_functions) {
SymbolTableImpl symbol_table;
InferShapesImpl(
g,
std::unordered_map<std::string, TypeProto*>(0),
opset_imports,
options,
&symbol_table,
model_local_functions,
schema_registry);
}
void InferShapes(
ModelProto& m,
const ISchemaRegistry* schema_registry,
const ShapeInferenceOptions& options,
DataValueMap* generated_shape_data_by_name) {
auto opset_imports = GetOpsetImportsFromProto(m);
SymbolTableImpl symbol_table;
ModelLocalFunctionsMap model_local_functions_by_id;
for (const auto& function_proto : m.functions()) {
model_local_functions_by_id.insert({GetFunctionIdentifier(function_proto), &function_proto});
}
InferShapesImpl(
m.mutable_graph(),
std::unordered_map<std::string, TypeProto*>(0),
opset_imports,
options,
&symbol_table,
model_local_functions_by_id,
schema_registry,
generated_shape_data_by_name,
m.ir_version());
}
void InferShapes(
const std::string& model_path,
const std::string& save_path,
const ISchemaRegistry* schema_registry,
const ShapeInferenceOptions& options,
DataValueMap* generated_shape_data_by_name) {
ModelProto model;
LoadProtoFromPath(model_path, model);
InferShapes(model, schema_registry, options, generated_shape_data_by_name);
// Save the inferred model to the original model path
// Use SerializeToString instead of SerializeToOstream due to LITE_PROTO
std::fstream output(save_path, std::ios::out | std::ios::trunc | std::ios::binary);
std::string model_string;
ONNX_TRY {
model.SerializeToString(&model_string);
output << model_string;
}
ONNX_CATCH(...) {
fail_check("Unable to save inferred model to the target path:", save_path);
}
}
// Infer shape for functions
void InferShapeForFunctionNode(
const FunctionProto& func_proto,
const std::unordered_map<std::string, int>& func_opset_imports,
const ISchemaRegistry* schema_registry,
InferenceContext& ctx,
const ShapeInferenceOptions& options,
const std::unordered_map<std::string, const FunctionProto*>& model_local_functions_map,
SymbolTable* symbol_table,
DataValueMap* generated_shape_data_by_name) {
ShapeInferenceImplBase base(
nullptr, // no graph
{}, // outer_scope_value_types_by_name
func_opset_imports,
options,
symbol_table,
model_local_functions_map,
schema_registry,
generated_shape_data_by_name);
base.Process(func_proto, ctx);
base.FinalizeShapeInference();
}
void InferShapeForFunctionNode(
const FunctionProto& function_proto,
const ISchemaRegistry* schema_registry,
InferenceContext& ctx,
const ShapeInferenceOptions& options,
const std::unordered_map<std::string, const FunctionProto*>& model_local_functions_map,
SymbolTable* symbol_table,
DataValueMap* generated_shape_data_by_name) {
auto opset_imports = GetOpsetImportsFromProto(function_proto);
InferShapeForFunctionNode(
function_proto,
opset_imports,
schema_registry,
ctx,
options,
model_local_functions_map,
symbol_table,
generated_shape_data_by_name);
}
struct FunctionInferenceContext : public InferenceContext {
FunctionInferenceContext(
const FunctionProto& func_proto,
const std::vector<TypeProto>& input_types,
const std::vector<AttributeProto>& attributes,
const ShapeInferenceOptions& options)
: input_types_(input_types), options_(options) {
for (const auto& attr : attributes) {
attributesByName_[attr.name()] = &attr;
}
auto num_outputs = func_proto.output_size();
for (int i = 0; i < num_outputs; i++) {
output_types_.push_back(TypeProto());
}
}
const AttributeProto* getAttribute(const std::string& name) const override {
auto iter = attributesByName_.find(name);
if (iter == attributesByName_.end()) {
return nullptr;
} else {
return iter->second;
}
}
size_t getNumInputs() const override {
return input_types_.size();
}
size_t getNumOutputs() const override {
return output_types_.size();
}
const TypeProto* getInputType(size_t index) const override {
// We should return nullptr for missing optional parameters.
// An uninitialized TypeProto() is used for missing optional parameters, and
// is mapped to a nullptr here.
if (index >= input_types_.size())
return nullptr;
if (input_types_[index].value_case() == TypeProto::ValueCase::VALUE_NOT_SET)
return nullptr;
return &input_types_[index];
}
TypeProto* getOutputType(size_t index) override {
return (index < output_types_.size()) ? &output_types_[index] : nullptr;
}
GraphInferencer* getGraphAttributeInferencer(const std::string& attribute_name) override {
ONNX_UNUSED_PARAMETER(attribute_name); // This method is unused for function-type-inference.
return nullptr;
}
const TensorProto* getInputData(size_t index) const override {
ONNX_UNUSED_PARAMETER(index); // This inference doesn't take advantage of statically known input values.
return nullptr;
}
const SparseTensorProto* getInputSparseData(size_t index) const override {
ONNX_UNUSED_PARAMETER(index); // This inference doesn't take advantage of statically known input values.
return nullptr;
}
const TensorShapeProto* getSymbolicInput(size_t index) const override {
ONNX_UNUSED_PARAMETER(index); // This inference doesn't take advantage of data-propagation.
return nullptr;
}
std::vector<TypeProto> popOutputTypes() {
return std::move(output_types_);
}
private:
const std::vector<TypeProto>& input_types_;
std::vector<TypeProto> output_types_;
std::unordered_map<std::string, const AttributeProto*> attributesByName_;
ShapeInferenceOptions options_;
};
std::vector<TypeProto> InferFunctionOutputTypes(
const FunctionProto& function_proto,
const std::vector<TypeProto>& input_types,
const std::vector<AttributeProto>& attributes) {
// TODO: if it is desirable for infer_function_output_types to provide check_type, strict_mode, data_prop,
// we can add them to the Python API. For now we just assume the default options.
ShapeInferenceOptions options{true, 1, false};
FunctionInferenceContext ctx(function_proto, input_types, attributes, options);
auto opset_imports = GetOpsetImportsFromProto(function_proto);
ShapeInferenceImplBase base(
nullptr, // no graph
{}, // outer_scope_value_types_by_name
opset_imports,
options,
/*symbol_table*/ nullptr,
/*model_local_functions_map*/ {},
/*schema_registry*/ OpSchemaRegistry::Instance(),
/*generated_shape_data_by_name*/ nullptr);
base.Process(function_proto, ctx);
base.FinalizeShapeInference();
return ctx.popOutputTypes();
}
std::vector<const TypeProto*> GraphInferencerImpl::doInferencing(
const std::vector<const TypeProto*>& input_types,
const std::vector<const TensorProto*>& input_data) {
SymbolTable* symbol_table = context_->symbol_table;
int num_inputs = int(input_types.size());
std::unordered_set<std::string> initializer_name_set;
for (const auto& tp : g_->initializer()) {
initializer_name_set.insert(tp.name());
}
if (context_->ir_version >= 4) {
if (g_->input_size() != num_inputs) {
fail_shape_inference("Graph has ", g_->input_size(), " inputs but ", num_inputs, " were provided");
}
for (int i = 0; i < g_->input_size(); ++i) {
if (initializer_name_set.count(g_->input(i).name()) > 0) {
fail_shape_inference(
"Cannot use the same name as both a subgraph initializer and subgraph input: ", g_->input(i).name());
}
}
} else {
// IR < 4 requires all initializers to be optional inputs
// So the number of graph input can be larger than the number of node input
if (num_inputs > g_->input_size()) {
fail_shape_inference(
"Graph has ",
g_->input_size(),
" inputs but ",
num_inputs,
" were provided.",
"The number of graph input cannot be smaller than the number of node input");
} else if (num_inputs < g_->input_size()) {
for (int i = 0; i < g_->input_size(); ++i) {
if (i < num_inputs && initializer_name_set.count(g_->input(i).name()) > 0) {
fail_shape_inference("Graph initializer names must appear after the actual inputs: ", g_->input(i).name());
} else if (i >= num_inputs && initializer_name_set.count(g_->input(i).name()) == 0) {
// Further check whether the additional input is in initializers
fail_shape_inference("Cannot find missing input: ", g_->input(i).name(), "in initializers. ");
}
}
}
}
for (int i = 0, end = num_inputs; i < end; ++i) {
const TypeProto* inferred_input = input_types[i];
if (!inferred_input)
continue;
TypeProto* graph_input = g_->mutable_input(i)->mutable_type();
// Even if graphInput doesn't have defined type, it will assign inferredType to it
mergeShapesAndTypes(*inferred_input, graph_input);
if (symbol_table) {
MaterializeSymbolicShape(graph_input, *symbol_table);
}
}
// future: pass inputData into InferShapes either directly, or indirectly by
// updating initializers that match subgraph inputs.
(void)input_data;
InferShapesImpl(
g_,
*context_->outer_scope_value_types_by_name, // never null
context_->opset_imports,
options_,
symbol_table,
context_->model_local_functions,
context_->schema_registry,
context_->generated_shape_data_by_name);
std::vector<const TypeProto*> graph_output_types;
graph_output_types.reserve(g_->output().size());
for (const ValueInfoProto& output : g_->output()) {
graph_output_types.push_back(&output.type());
}
return graph_output_types;
}
std::string GetErrorWithNodeInfo(const NodeProto& n, const std::runtime_error& err) {
std::string op_name = n.has_name() ? (", node name: " + n.name()) : "";
return "(op_type:" + n.op_type() + op_name + "): " + err.what();
}
void TraverseGraphsToAddExistingSymbols(const GraphProto& g, SymbolTable& symbol_table) {
symbol_table.addFromGraph(g);
for (const auto& n : g.node()) {
for (auto& attr : n.attribute()) {
if (attr.has_g()) {
TraverseGraphsToAddExistingSymbols(attr.g(), symbol_table);
}
}
}
}
} // namespace shape_inference
} // namespace ONNX_NAMESPACE