Spaces:
Sleeping
Sleeping
File size: 15,047 Bytes
942ac66 34d17cd 942ac66 34d17cd e585eee 34d17cd b5158ae 34d17cd b5158ae 34d17cd b5158ae fcd7b2b 34d17cd e585eee b5158ae f72d8ff 943da33 e585eee b5158ae 34d17cd b5158ae 942ac66 b5158ae e585eee ac2e91b 5a386b0 e585eee 942ac66 e585eee b5158ae 942ac66 1b44a17 e585eee 1b44a17 942ac66 e585eee b5158ae e585eee 942ac66 1b44a17 942ac66 1b44a17 942ac66 1b44a17 942ac66 1b44a17 942ac66 e38f376 b5158ae e585eee b5158ae e585eee b5158ae e585eee b5158ae e585eee 942ac66 e585eee b5158ae e585eee b5158ae e585eee b5158ae e585eee b5158ae e585eee b5158ae 942ac66 2a52435 e585eee d7bfcac 942ac66 d7bfcac 942ac66 d7bfcac 942ac66 d7bfcac 942ac66 d7bfcac 942ac66 d7bfcac 942ac66 d7bfcac 942ac66 d7bfcac 942ac66 d7bfcac 942ac66 d7bfcac 92d3c39 942ac66 d7bfcac 942ac66 d7bfcac 942ac66 d7bfcac 942ac66 d7bfcac 942ac66 d7bfcac 92d3c39 942ac66 92d3c39 942ac66 92d3c39 d7bfcac 942ac66 92d3c39 942ac66 92d3c39 b5158ae 942ac66 92d3c39 942ac66 f648e72 2a52435 f427793 34d17cd 2a52435 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
from flask import Flask, render_template, request, redirect, url_for, flash, send_from_directory
from flask_socketio import SocketIO
import os
import threading
from dotenv import load_dotenv
from werkzeug.utils import secure_filename
# LangChain and agent imports
from typing import Annotated, Literal
from langchain_core.messages import AIMessage, ToolMessage
from pydantic import BaseModel, Field
from typing_extensions import TypedDict
from langgraph.graph import END, START, StateGraph
from langgraph.graph.message import AnyMessage, add_messages
from langchain_core.runnables import RunnableLambda, RunnableWithFallbacks
from langgraph.prebuilt import ToolNode
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.utilities import SQLDatabase
from langchain_community.agent_toolkits import SQLDatabaseToolkit
from langchain_core.tools import tool
import traceback
# Load environment variables
load_dotenv()
# Global configuration variables
UPLOAD_FOLDER = os.path.join(os.getcwd(), "uploads")
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
BASE_DIR = os.path.abspath(os.path.dirname(__file__))
# API Keys from .env file
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
os.environ["MISTRAL_API_KEY"] = os.getenv("MISTRAL_API_KEY")
# Flask and SocketIO setup
flask_app = Flask(__name__)
flask_app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
# Set secret key for flash messages:
flask_app.config['SECRET_KEY'] = os.getenv("FLASK_SECRET_KEY", "mysecretkey")
socketio = SocketIO(flask_app, cors_allowed_origins="*")
# Global state
agent_app = None
abs_file_path = None
def create_agent_app(db_path: str):
try:
from langchain_groq import ChatGroq
llm = ChatGroq(model="llama3-70b-8192")
except Exception as e:
flash(f"[ERROR]: Failed to initialize ChatGroq: {e}", "error")
raise
abs_db_path = os.path.abspath(db_path)
try:
db_instance = SQLDatabase.from_uri(f"sqlite:///{abs_db_path}")
except Exception as e:
flash(f"[ERROR]: Failed to connect to DB: {e}", "error")
raise
@tool
def db_query_tool(query: str) -> str:
"""
Execute a SQL query against the database and return the result.
If the query is invalid or returns no result, an error message will be returned.
In case of an error, the user is advised to rewrite the query and try again.
"""
try:
result = db_instance.run_no_throw(query)
return result or "Error: Query failed. Please rewrite your query and try again."
except Exception as e:
flash(f"[ERROR]: Exception during query execution: {e}", "error")
return f"Error: {str(e)}"
class SubmitFinalAnswer(BaseModel):
final_answer: str = Field(...)
class State(TypedDict):
messages: Annotated[list[AnyMessage], add_messages]
try:
query_check_system = """You are a SQL expert with a strong attention to detail.
Double check the SQLite query for common mistakes, including:
- Using NOT IN with NULL values
- Using UNION when UNION ALL should have been used
- Using BETWEEN for exclusive ranges
- Data type mismatch in predicates
- Properly quoting identifiers
- Using the correct number of arguments for functions
- Casting to the correct data type
- Using the proper columns for joins
If there are any of the above mistakes, rewrite the query. If there are no mistakes, just reproduce the original query.
You will call the appropriate tool to execute the query after running this check.
"""
query_check = ChatPromptTemplate.from_messages([
("system", query_check_system),
("placeholder", "{messages}")
]) | llm.bind_tools([db_query_tool])
query_gen_system = """You are a SQL expert with a strong attention to detail.
Given an input question, output a syntactically correct SQLite query to run, then look at the results of the query and return the answer.
DO NOT call any tool besides SubmitFinalAnswer to submit the final answer.
When generating the query:
Output the SQL query that answers the input question without a tool call.
Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most 5 results.
You can order the results by a relevant column to return the most interesting examples in the database.
Never query for all the columns from a specific table, only ask for the relevant columns given the question.
If you get an error while executing a query, rewrite the query and try again.
If you get an empty result set, you should try to rewrite the query to get a non-empty result set.
NEVER make stuff up if you don't have enough information to answer the query... just say you don't have enough information.
If you have enough information to answer the input question, simply invoke the appropriate tool to submit the final answer to the user.
DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database. Do not return any sql query except answer.
"""
query_gen = ChatPromptTemplate.from_messages([
("system", query_gen_system),
("placeholder", "{messages}")
]) | llm.bind_tools([SubmitFinalAnswer])
except Exception as e:
flash(f"[ERROR]: Failed to create prompt templates: {e}", "error")
raise
try:
toolkit = SQLDatabaseToolkit(db=db_instance, llm=llm)
tools_instance = toolkit.get_tools()
except Exception as e:
flash(f"[ERROR]: Failed to initialize SQL toolkit: {e}", "error")
raise
def first_tool_call(state: State):
return {"messages": [AIMessage(content="", tool_calls=[{"name": "sql_db_list_tables", "args": {}, "id": "tool_abcd123"}])]}
def handle_tool_error(state: State):
tool_calls = state["messages"][-1].tool_calls
return {"messages": [
ToolMessage(content="Error occurred. Please revise.", tool_call_id=tc["id"]) for tc in tool_calls
]}
def create_tool_node_with_fallback(tools_list):
return ToolNode(tools_list).with_fallbacks([RunnableLambda(handle_tool_error)], exception_key="error")
def query_gen_node(state: State):
try:
message = query_gen.invoke(state)
except Exception as e:
flash(f"[ERROR]: Exception in query_gen_node: {e}", "error")
raise
tool_messages = []
if message.tool_calls:
for tc in message.tool_calls:
if tc["name"] != "SubmitFinalAnswer":
tool_messages.append(ToolMessage(
content=f"Error: Wrong tool called: {tc['name']}",
tool_call_id=tc["id"]
))
return {"messages": [message] + tool_messages}
def should_continue(state: State):
last_message = state["messages"][-1]
if getattr(last_message, "tool_calls", None):
return END
if last_message.content.startswith("Error:"):
return "query_gen"
return "correct_query"
def model_check_query(state: State):
return {"messages": [query_check.invoke({"messages": [state["messages"][-1]]})]}
list_tool = next((t for t in tools_instance if t.name == "sql_db_list_tables"), None)
schema_tool = next((t for t in tools_instance if t.name == "sql_db_schema"), None)
model_get_schema = llm.bind_tools([schema_tool])
workflow = StateGraph(State)
workflow.add_node("first_tool_call", first_tool_call)
workflow.add_node("list_tables_tool", create_tool_node_with_fallback([list_tool]))
workflow.add_node("get_schema_tool", create_tool_node_with_fallback([schema_tool]))
# Fixed unterminated string literal:
workflow.add_node("model_get_schema", lambda s: {"messages": [model_get_schema.invoke(s["messages"])]})
workflow.add_node("query_gen", query_gen_node)
workflow.add_node("correct_query", model_check_query)
workflow.add_node("execute_query", create_tool_node_with_fallback([db_query_tool]))
workflow.add_edge(START, "first_tool_call")
workflow.add_edge("first_tool_call", "list_tables_tool")
workflow.add_edge("list_tables_tool", "model_get_schema")
workflow.add_edge("model_get_schema", "get_schema_tool")
workflow.add_edge("get_schema_tool", "query_gen")
workflow.add_conditional_edges("query_gen", should_continue)
workflow.add_edge("correct_query", "execute_query")
workflow.add_edge("execute_query", "query_gen")
return workflow.compile()
@flask_app.route("/files/<path:filename>")
def uploaded_file(filename):
try:
return send_from_directory(flask_app.config['UPLOAD_FOLDER'], filename)
except Exception as e:
flash(f"[ERROR]: Could not send file: {str(e)}", "error")
return redirect(url_for("index"))
# -------------------------------------------------------------------------
# Helper: run_agent runs the agent with the given prompt.
# -------------------------------------------------------------------------
def run_agent(prompt, socketio):
global agent_app, abs_file_path
if not abs_file_path:
socketio.emit("log", {"message": "[ERROR]: No DB file uploaded."})
socketio.emit("final", {"message": "No database available. Please upload one and try again."})
flash("No database available. Please upload one and try again.", "error")
return
try:
# Lazy agent initialization: use the previously uploaded DB.
if agent_app is None:
socketio.emit("log", {"message": "[INFO]: Initializing agent for the first time..."})
agent_app = create_agent_app(abs_file_path)
socketio.emit("log", {"message": "[INFO]: Agent initialized."})
flash("Agent initialized.", "info")
query = {"messages": [("user", prompt)]}
result = agent_app.invoke(query)
try:
result = result["messages"][-1].tool_calls[0]["args"]["final_answer"]
except Exception as e:
result = "Query failed or no valid answer found."
flash("Query failed or no valid answer found.", "warning")
socketio.emit("final", {"message": result})
except Exception as e:
error_message = f"Generation failed: {str(e)}"
socketio.emit("log", {"message": f"[ERROR]: {error_message}"})
socketio.emit("final", {"message": "Generation failed."})
flash(error_message, "error")
traceback.print_exc()
# -------------------------------------------------------------------------
# Route: index page.
# -------------------------------------------------------------------------
@flask_app.route("/")
def index():
return render_template("index.html")
# -------------------------------------------------------------------------
# Route: generate (POST) – receives a prompt and runs the agent.
# -------------------------------------------------------------------------
@flask_app.route("/generate", methods=["POST"])
def generate():
try:
socketio.emit("log", {"message": "[STEP]: Entering query generation..."})
data = request.json
prompt = data.get("prompt", "")
socketio.emit("log", {"message": f"[INFO]: Received prompt: {prompt}"})
thread = threading.Thread(target=run_agent, args=(prompt, socketio))
socketio.emit("log", {"message": f"[INFO]: Starting thread: {thread}"})
thread.start()
flash("Query submitted successfully.", "info")
return "OK", 200
except Exception as e:
error_message = f"[ERROR]: {str(e)}"
socketio.emit("log", {"message": error_message})
flash(error_message, "error")
return "ERROR", 500
# -------------------------------------------------------------------------
# Route: upload (GET/POST) – handles uploading the SQLite DB file.
# -------------------------------------------------------------------------
@flask_app.route("/upload", methods=["GET", "POST"])
def upload():
global abs_file_path, agent_app
try:
if request.method == "POST":
file = request.files.get("file")
if not file:
flash("No file uploaded.", "error")
return "No file uploaded", 400
filename = secure_filename(file.filename)
if filename.endswith('.db'):
db_path = os.path.join(flask_app.config['UPLOAD_FOLDER'], "uploaded.db")
try:
file.save(db_path)
abs_file_path = os.path.abspath(db_path) # Save it here; agent init will occur on first query.
agent_app = None # Reset agent on upload.
flash(f"Database file '{filename}' uploaded successfully.", "info")
socketio.emit("log", {"message": f"[INFO]: Database file '{filename}' uploaded."})
return redirect(url_for("index"))
except Exception as save_err:
flash(f"Error saving file: {save_err}", "error")
socketio.emit("log", {"message": f"[ERROR]: Error saving file: {save_err}"})
return render_template("upload.html")
else:
flash("Only .db files are allowed.", "error")
return render_template("upload.html")
return render_template("upload.html")
except Exception as e:
error_message = f"[ERROR]: {str(e)}"
flash(error_message, "error")
socketio.emit("log", {"message": error_message})
return render_template("upload.html")
@socketio.on("user_input")
def handle_user_input(data):
prompt = data.get("message")
if not prompt:
socketio.emit("log", {"message": "[ERROR]: Empty prompt."})
flash("Empty prompt.", "error")
return
run_agent(prompt, socketio)
# Expose the Flask app as "app" for Gunicorn
app = flask_app
if __name__ == "__main__":
socketio.run(app, debug=True)
|