File size: 7,651 Bytes
2a52435
34d17cd
 
 
e585eee
34d17cd
 
b5158ae
34d17cd
 
 
b5158ae
34d17cd
 
 
b5158ae
 
 
 
fcd7b2b
 
34d17cd
 
 
e585eee
 
b5158ae
f72d8ff
943da33
e585eee
b5158ae
 
34d17cd
b5158ae
 
 
 
 
 
e585eee
ac2e91b
5a386b0
e585eee
 
 
 
b5158ae
 
 
e585eee
 
 
b5158ae
e585eee
 
b5158ae
e585eee
 
 
 
b5158ae
 
e585eee
b5158ae
e585eee
b5158ae
 
e585eee
b5158ae
e585eee
b5158ae
 
e38f376
b5158ae
 
e585eee
b5158ae
e585eee
 
b5158ae
e585eee
 
b5158ae
e585eee
 
 
 
 
 
 
 
 
b5158ae
e585eee
 
 
 
b5158ae
 
e585eee
 
 
 
 
 
b5158ae
e585eee
 
b5158ae
 
 
e585eee
 
 
b5158ae
 
2a52435
 
e585eee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92d3c39
 
 
f648e72
92d3c39
 
b5158ae
92d3c39
 
 
 
 
f648e72
92d3c39
 
b5158ae
 
 
2a52435
b5158ae
92d3c39
 
 
 
 
 
 
 
 
 
b5158ae
92d3c39
 
 
 
 
 
b5158ae
92d3c39
 
 
 
 
 
 
 
6e0b574
92d3c39
 
 
 
 
 
 
f648e72
2a52435
f427793
 
34d17cd
2a52435
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from flask import Flask, render_template, request, redirect, url_for, flash
from flask_socketio import SocketIO
import os
from dotenv import load_dotenv
from werkzeug.utils import secure_filename

# LangChain and agent imports
from typing import Annotated, Literal
from langchain_core.messages import AIMessage, ToolMessage
from pydantic import BaseModel, Field
from typing_extensions import TypedDict
from langgraph.graph import END, START, StateGraph
from langgraph.graph.message import AnyMessage, add_messages
from langchain_core.runnables import RunnableLambda, RunnableWithFallbacks
from langgraph.prebuilt import ToolNode
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.utilities import SQLDatabase
from langchain_community.agent_toolkits import SQLDatabaseToolkit
from langchain_core.tools import tool
import traceback

# Load environment variables
load_dotenv()

# Global configuration variables
UPLOAD_FOLDER = os.path.join(os.getcwd(), "uploads")
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
BASE_DIR = os.path.abspath(os.path.dirname(__file__))

# API Keys from .env file
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
os.environ["MISTRAL_API_KEY"] = os.getenv("MISTRAL_API_KEY")

# Flask and SocketIO setup
flask_app = Flask(__name__)
flask_app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
socketio = SocketIO(flask_app, cors_allowed_origins="*")

# Global state
agent_app = None
abs_file_path = None

def create_agent_app(db_path: str):
    from langchain_groq import ChatGroq
    llm = ChatGroq(model="llama3-70b-8192")

    abs_db_path = os.path.abspath(db_path)
    db_instance = SQLDatabase.from_uri(f"sqlite:///{abs_db_path}")

    @tool
    def db_query_tool(query: str) -> str:
        result = db_instance.run_no_throw(query)
        return result or "Error: Query failed. Please rewrite your query and try again."

    class SubmitFinalAnswer(BaseModel):
        final_answer: str = Field(...)

    class State(TypedDict):
        messages: Annotated[list[AnyMessage], add_messages]

    query_check = ChatPromptTemplate.from_messages([
        ("system", "You are a SQL expert. Fix common issues in SQLite queries."),
        ("placeholder", "{messages}")
    ]) | llm.bind_tools([db_query_tool])

    query_gen = ChatPromptTemplate.from_messages([
        ("system", "You are a SQL expert. Generate SQLite query and return answer using SubmitFinalAnswer tool."),
        ("placeholder", "{messages}")
    ]) | llm.bind_tools([SubmitFinalAnswer])

    toolkit = SQLDatabaseToolkit(db=db_instance, llm=llm)
    tools_instance = toolkit.get_tools()

    def first_tool_call(state: State):
        return {"messages": [AIMessage(content="", tool_calls=[{"name": "sql_db_list_tables", "args": {}, "id": "tool_abcd123"}])]} 

    def handle_tool_error(state: State):
        tool_calls = state["messages"][-1].tool_calls
        return {"messages": [
            ToolMessage(content="Error occurred. Please revise.", tool_call_id=tc["id"]) for tc in tool_calls
        ]}

    def create_tool_node_with_fallback(tools_list):
        return ToolNode(tools_list).with_fallbacks([RunnableLambda(handle_tool_error)], exception_key="error")

    def query_gen_node(state: State):
        message = query_gen.invoke(state)
        tool_messages = []
        if message.tool_calls:
            for tc in message.tool_calls:
                if tc["name"] != "SubmitFinalAnswer":
                    tool_messages.append(ToolMessage(
                        content=f"Error: Wrong tool called: {tc['name']}",
                        tool_call_id=tc["id"]
                    ))
        return {"messages": [message] + tool_messages}

    def should_continue(state: State):
        last_message = state["messages"][-1]
        if getattr(last_message, "tool_calls", None):
            return END
        if last_message.content.startswith("Error:"):
            return "query_gen"
        return "correct_query"

    def model_check_query(state: State):
        return {"messages": [query_check.invoke({"messages": [state["messages"][-1]]})]}

    list_tool = next((t for t in tools_instance if t.name == "sql_db_list_tables"), None)
    schema_tool = next((t for t in tools_instance if t.name == "sql_db_schema"), None)
    model_get_schema = llm.bind_tools([schema_tool])

    workflow = StateGraph(State)
    workflow.add_node("first_tool_call", first_tool_call)
    workflow.add_node("list_tables_tool", create_tool_node_with_fallback([list_tool]))
    workflow.add_node("get_schema_tool", create_tool_node_with_fallback([schema_tool]))
    # Corrected the unterminated string literal in the lambda function below:
    workflow.add_node("model_get_schema", lambda s: {"messages": [model_get_schema.invoke(s["messages"])]})
    workflow.add_node("query_gen", query_gen_node)
    workflow.add_node("correct_query", model_check_query)
    workflow.add_node("execute_query", create_tool_node_with_fallback([db_query_tool]))

    workflow.add_edge(START, "first_tool_call")
    workflow.add_edge("first_tool_call", "list_tables_tool")
    workflow.add_edge("list_tables_tool", "model_get_schema")
    workflow.add_edge("model_get_schema", "get_schema_tool")
    workflow.add_edge("get_schema_tool", "query_gen")
    workflow.add_conditional_edges("query_gen", should_continue)
    workflow.add_edge("correct_query", "execute_query")
    workflow.add_edge("execute_query", "query_gen")

    return workflow.compile()

@flask_app.route("/", methods=["GET"])
def index():
    return render_template("index.html")

@flask_app.route("/upload", methods=["GET", "POST"])
def upload():
    global abs_file_path, agent_app
    try:
        if request.method == "POST":
            file = request.files.get("file")
            if not file:
                return "No file uploaded", 400

            filename = secure_filename(file.filename)
            if filename.endswith('.db'):
                save_path = os.path.join(flask_app.config['UPLOAD_FOLDER'], "uploaded.db")
                file.save(save_path)
                abs_file_path = os.path.abspath(save_path)
                agent_app = None  # Reset agent; reinitialize on next query.
                socketio.emit("log", {"message": f"Database '{filename}' uploaded."})
                return redirect(url_for("index"))
        return render_template("upload.html")
    except Exception as e:
        socketio.emit("log", {"message": f"[ERROR]: {str(e)}"})
        return render_template("upload.html")

@socketio.on("user_input")
def handle_user_input(data):
    prompt = data.get("message")
    if not prompt:
        socketio.emit("log", {"message": "[ERROR]: Empty prompt."})
        return
    run_agent(prompt)

def run_agent(prompt):
    global agent_app, abs_file_path
    if not abs_file_path:
        socketio.emit("final", {"message": "No DB uploaded."})
        return
    try:
        if agent_app is None:
            agent_app = create_agent_app(abs_file_path)
            socketio.emit("log", {"message": "[INFO]: Agent initialized."})

        query = {"messages": [("user", prompt)]}
        result = agent_app.invoke(query)
        try:
            result = result["messages"][-1].tool_calls[0]["args"]["final_answer"]
        except Exception:
            result = "Query failed or no valid answer found."
        socketio.emit("final", {"message": result})
    except Exception as e:
        socketio.emit("log", {"message": f"[ERROR]: {str(e)}"})
        socketio.emit("final", {"message": "Generation failed."})

# Expose the Flask app as "app" for Gunicorn
app = flask_app

if __name__ == "__main__":
    socketio.run(app, debug=True)