Spaces:
Sleeping
Sleeping
File size: 7,651 Bytes
2a52435 34d17cd e585eee 34d17cd b5158ae 34d17cd b5158ae 34d17cd b5158ae fcd7b2b 34d17cd e585eee b5158ae f72d8ff 943da33 e585eee b5158ae 34d17cd b5158ae e585eee ac2e91b 5a386b0 e585eee b5158ae e585eee b5158ae e585eee b5158ae e585eee b5158ae e585eee b5158ae e585eee b5158ae e585eee b5158ae e585eee b5158ae e38f376 b5158ae e585eee b5158ae e585eee b5158ae e585eee b5158ae e585eee b5158ae e585eee b5158ae e585eee b5158ae e585eee b5158ae e585eee b5158ae 2a52435 e585eee 92d3c39 f648e72 92d3c39 b5158ae 92d3c39 f648e72 92d3c39 b5158ae 2a52435 b5158ae 92d3c39 b5158ae 92d3c39 b5158ae 92d3c39 6e0b574 92d3c39 f648e72 2a52435 f427793 34d17cd 2a52435 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
from flask import Flask, render_template, request, redirect, url_for, flash
from flask_socketio import SocketIO
import os
from dotenv import load_dotenv
from werkzeug.utils import secure_filename
# LangChain and agent imports
from typing import Annotated, Literal
from langchain_core.messages import AIMessage, ToolMessage
from pydantic import BaseModel, Field
from typing_extensions import TypedDict
from langgraph.graph import END, START, StateGraph
from langgraph.graph.message import AnyMessage, add_messages
from langchain_core.runnables import RunnableLambda, RunnableWithFallbacks
from langgraph.prebuilt import ToolNode
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.utilities import SQLDatabase
from langchain_community.agent_toolkits import SQLDatabaseToolkit
from langchain_core.tools import tool
import traceback
# Load environment variables
load_dotenv()
# Global configuration variables
UPLOAD_FOLDER = os.path.join(os.getcwd(), "uploads")
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
BASE_DIR = os.path.abspath(os.path.dirname(__file__))
# API Keys from .env file
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
os.environ["MISTRAL_API_KEY"] = os.getenv("MISTRAL_API_KEY")
# Flask and SocketIO setup
flask_app = Flask(__name__)
flask_app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
socketio = SocketIO(flask_app, cors_allowed_origins="*")
# Global state
agent_app = None
abs_file_path = None
def create_agent_app(db_path: str):
from langchain_groq import ChatGroq
llm = ChatGroq(model="llama3-70b-8192")
abs_db_path = os.path.abspath(db_path)
db_instance = SQLDatabase.from_uri(f"sqlite:///{abs_db_path}")
@tool
def db_query_tool(query: str) -> str:
result = db_instance.run_no_throw(query)
return result or "Error: Query failed. Please rewrite your query and try again."
class SubmitFinalAnswer(BaseModel):
final_answer: str = Field(...)
class State(TypedDict):
messages: Annotated[list[AnyMessage], add_messages]
query_check = ChatPromptTemplate.from_messages([
("system", "You are a SQL expert. Fix common issues in SQLite queries."),
("placeholder", "{messages}")
]) | llm.bind_tools([db_query_tool])
query_gen = ChatPromptTemplate.from_messages([
("system", "You are a SQL expert. Generate SQLite query and return answer using SubmitFinalAnswer tool."),
("placeholder", "{messages}")
]) | llm.bind_tools([SubmitFinalAnswer])
toolkit = SQLDatabaseToolkit(db=db_instance, llm=llm)
tools_instance = toolkit.get_tools()
def first_tool_call(state: State):
return {"messages": [AIMessage(content="", tool_calls=[{"name": "sql_db_list_tables", "args": {}, "id": "tool_abcd123"}])]}
def handle_tool_error(state: State):
tool_calls = state["messages"][-1].tool_calls
return {"messages": [
ToolMessage(content="Error occurred. Please revise.", tool_call_id=tc["id"]) for tc in tool_calls
]}
def create_tool_node_with_fallback(tools_list):
return ToolNode(tools_list).with_fallbacks([RunnableLambda(handle_tool_error)], exception_key="error")
def query_gen_node(state: State):
message = query_gen.invoke(state)
tool_messages = []
if message.tool_calls:
for tc in message.tool_calls:
if tc["name"] != "SubmitFinalAnswer":
tool_messages.append(ToolMessage(
content=f"Error: Wrong tool called: {tc['name']}",
tool_call_id=tc["id"]
))
return {"messages": [message] + tool_messages}
def should_continue(state: State):
last_message = state["messages"][-1]
if getattr(last_message, "tool_calls", None):
return END
if last_message.content.startswith("Error:"):
return "query_gen"
return "correct_query"
def model_check_query(state: State):
return {"messages": [query_check.invoke({"messages": [state["messages"][-1]]})]}
list_tool = next((t for t in tools_instance if t.name == "sql_db_list_tables"), None)
schema_tool = next((t for t in tools_instance if t.name == "sql_db_schema"), None)
model_get_schema = llm.bind_tools([schema_tool])
workflow = StateGraph(State)
workflow.add_node("first_tool_call", first_tool_call)
workflow.add_node("list_tables_tool", create_tool_node_with_fallback([list_tool]))
workflow.add_node("get_schema_tool", create_tool_node_with_fallback([schema_tool]))
# Corrected the unterminated string literal in the lambda function below:
workflow.add_node("model_get_schema", lambda s: {"messages": [model_get_schema.invoke(s["messages"])]})
workflow.add_node("query_gen", query_gen_node)
workflow.add_node("correct_query", model_check_query)
workflow.add_node("execute_query", create_tool_node_with_fallback([db_query_tool]))
workflow.add_edge(START, "first_tool_call")
workflow.add_edge("first_tool_call", "list_tables_tool")
workflow.add_edge("list_tables_tool", "model_get_schema")
workflow.add_edge("model_get_schema", "get_schema_tool")
workflow.add_edge("get_schema_tool", "query_gen")
workflow.add_conditional_edges("query_gen", should_continue)
workflow.add_edge("correct_query", "execute_query")
workflow.add_edge("execute_query", "query_gen")
return workflow.compile()
@flask_app.route("/", methods=["GET"])
def index():
return render_template("index.html")
@flask_app.route("/upload", methods=["GET", "POST"])
def upload():
global abs_file_path, agent_app
try:
if request.method == "POST":
file = request.files.get("file")
if not file:
return "No file uploaded", 400
filename = secure_filename(file.filename)
if filename.endswith('.db'):
save_path = os.path.join(flask_app.config['UPLOAD_FOLDER'], "uploaded.db")
file.save(save_path)
abs_file_path = os.path.abspath(save_path)
agent_app = None # Reset agent; reinitialize on next query.
socketio.emit("log", {"message": f"Database '{filename}' uploaded."})
return redirect(url_for("index"))
return render_template("upload.html")
except Exception as e:
socketio.emit("log", {"message": f"[ERROR]: {str(e)}"})
return render_template("upload.html")
@socketio.on("user_input")
def handle_user_input(data):
prompt = data.get("message")
if not prompt:
socketio.emit("log", {"message": "[ERROR]: Empty prompt."})
return
run_agent(prompt)
def run_agent(prompt):
global agent_app, abs_file_path
if not abs_file_path:
socketio.emit("final", {"message": "No DB uploaded."})
return
try:
if agent_app is None:
agent_app = create_agent_app(abs_file_path)
socketio.emit("log", {"message": "[INFO]: Agent initialized."})
query = {"messages": [("user", prompt)]}
result = agent_app.invoke(query)
try:
result = result["messages"][-1].tool_calls[0]["args"]["final_answer"]
except Exception:
result = "Query failed or no valid answer found."
socketio.emit("final", {"message": result})
except Exception as e:
socketio.emit("log", {"message": f"[ERROR]: {str(e)}"})
socketio.emit("final", {"message": "Generation failed."})
# Expose the Flask app as "app" for Gunicorn
app = flask_app
if __name__ == "__main__":
socketio.run(app, debug=True)
|