Spaces:
Sleeping
Sleeping
File size: 17,930 Bytes
ae9b429 34d17cd 942ac66 ae9b429 34d17cd ae9b429 e585eee ae9b429 34d17cd ae9b429 ffc8eed ae9b429 34d17cd ae9b429 34d17cd b5158ae fcd7b2b 34d17cd e585eee b5158ae f72d8ff 943da33 e585eee b5158ae 34d17cd 42f9586 e585eee ac2e91b ae9b429 5a386b0 ae9b429 e585eee 42f9586 ae9b429 e585eee 1b44a17 ae9b429 1b44a17 942ac66 ae9b429 942ac66 e585eee ae9b429 e585eee ae9b429 e585eee ae9b429 e585eee ae9b429 42f9586 ae9b429 543ef0b ae9b429 543ef0b ae9b429 942ac66 ae9b429 942ac66 ae9b429 b5158ae ae9b429 e585eee b5158ae e585eee b5158ae e585eee b5158ae e585eee 942ac66 ae9b429 e585eee b5158ae e585eee ae9b429 e585eee b5158ae e585eee ae9b429 b5158ae e585eee ae9b429 b5158ae ae9b429 e585eee ae9b429 d7bfcac ae9b429 942ac66 ae9b429 71d3ab3 ae9b429 543ef0b ffc8eed ae9b429 543ef0b a875426 543ef0b a875426 ae9b429 543ef0b a875426 ffc8eed ae9b429 a875426 ae9b429 ffc8eed ae9b429 ffc8eed ae9b429 543ef0b ae9b429 942ac66 543ef0b ae9b429 942ac66 ae9b429 543ef0b 942ac66 543ef0b ae9b429 f427793 34d17cd ae9b429 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
from flask import Flask, render_template, request, redirect, url_for, send_from_directory, flash
from flask_socketio import SocketIO
import threading
import os
from dotenv import load_dotenv
import sqlite3
from werkzeug.utils import secure_filename
import traceback
# LangChain and agent imports
from langchain_community.chat_models.huggingface import ChatHuggingFace # if needed later
from langchain.agents import Tool
from langchain.agents.format_scratchpad import format_log_to_str
from langchain.agents.output_parsers import ReActJsonSingleInputOutputParser
from langchain_core.callbacks import CallbackManager, BaseCallbackHandler
from langchain_community.agent_toolkits.load_tools import load_tools
from langchain_core.tools import tool
from langchain_community.agent_toolkits import SQLDatabaseToolkit
from langchain.chains import LLMMathChain
from langchain import hub
from langchain_community.tools import DuckDuckGoSearchRun
# Agent requirements and type hints
from typing import Annotated, Literal, TypedDict, Any
from langchain_core.messages import AIMessage, ToolMessage
from pydantic import BaseModel, Field
from typing_extensions import TypedDict
from langgraph.graph import END, StateGraph, START
from langgraph.graph.message import AnyMessage, add_messages
from langchain_core.runnables import RunnableLambda, RunnableWithFallbacks
from langgraph.prebuilt import ToolNode
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.utilities import SQLDatabase
# Load environment variables
load_dotenv()
# Global configuration variables
UPLOAD_FOLDER = os.path.join(os.getcwd(), "uploads")
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
BASE_DIR = os.path.abspath(os.path.dirname(__file__))
# API Keys from .env file
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
os.environ["MISTRAL_API_KEY"] = os.getenv("MISTRAL_API_KEY")
# Global state: dynamic agent and DB file path
agent_app = None
abs_file_path = None
db_path = None
# =============================================================================
# create_agent_app: Given a database path, initialize the agent workflow.
# =============================================================================
def create_agent_app(db_path: str):
# Use ChatGroq as our LLM here; swap to ChatMistralAI if preferred.
from langchain_groq import ChatGroq
llm = ChatGroq(model="llama3-70b-8192")
# -------------------------------------------------------------------------
# Define a tool for executing SQL queries, with an explicit description.
# -------------------------------------------------------------------------
@tool(description="Executes a SQL query on the connected SQLite database and returns the result.")
def db_query_tool(query: str) -> str:
"""
Executes a SQL query on the connected SQLite database.
"""
try:
result = db_instance.run_no_throw(query)
return result if result else "Error: Query failed. Please rewrite your query and try again."
except Exception as e:
return f"Error: {str(e)}"
# -------------------------------------------------------------------------
# Pydantic model for final answer.
# -------------------------------------------------------------------------
class SubmitFinalAnswer(BaseModel):
final_answer: str = Field(..., description="The final answer to the user")
# -------------------------------------------------------------------------
# Define state type for our workflow.
# -------------------------------------------------------------------------
class State(TypedDict):
messages: Annotated[list[AnyMessage], add_messages]
# -------------------------------------------------------------------------
# Set up prompt templates for query checking and generation.
# -------------------------------------------------------------------------
query_check_system = (
"You are a SQL expert with a strong attention to detail.\n"
"Double check the SQLite query for common mistakes, including:\n"
"- Using NOT IN with NULL values\n"
"- Using UNION when UNION ALL should have been used\n"
"- Using BETWEEN for exclusive ranges\n"
"- Data type mismatch in predicates\n"
"- Properly quoting identifiers\n"
"- Using the correct number of arguments for functions\n"
"- Casting to the correct data type\n"
"- Using the proper columns for joins\n\n"
"If there are any of the above mistakes, rewrite the query. If there are no mistakes, just reproduce the original query.\n"
"You will call the appropriate tool to execute the query after running this check."
)
query_check_prompt = ChatPromptTemplate.from_messages([
("system", query_check_system),
("placeholder", "{messages}")
])
query_check = query_check_prompt | llm.bind_tools([db_query_tool])
query_gen_system = (
"You are a SQL expert with a strong attention to detail.\n\n"
"Given an input question, output a syntactically correct SQLite query to run, then look at the results of the query and return the answer.\n\n"
"DO NOT call any tool besides SubmitFinalAnswer to submit the final answer.\n\n"
"When generating the query:\n"
"Output the SQL query that answers the input question without a tool call.\n"
"Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most 5 results.\n"
"You can order the results by a relevant column to return the most interesting examples in the database.\n"
"Never query for all the columns from a specific table, only ask for the relevant columns given the question.\n\n"
"If you get an error while executing a query, rewrite the query and try again.\n"
"If you get an empty result set, you should try to rewrite the query to get a non-empty result set.\n"
"NEVER make stuff up if you don't have enough information to answer the query... just say you don't have enough information.\n\n"
"If you have enough information to answer the input question, simply invoke the appropriate tool to submit the final answer to the user.\n"
"DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database. Do not return any SQL query except answer."
)
query_gen_prompt = ChatPromptTemplate.from_messages([
("system", query_gen_system),
("placeholder", "{messages}")
])
query_gen = query_gen_prompt | llm.bind_tools([SubmitFinalAnswer])
# -------------------------------------------------------------------------
# Create SQLDatabase connection.
# -------------------------------------------------------------------------
db_uri = f"sqlite:///{os.path.abspath(db_path)}"
print("db_uri", db_uri)
try:
db_instance = SQLDatabase.from_uri(db_uri)
except Exception as e:
raise Exception(f"Failed to create SQLDatabase connection: {e}")
print("db_instance----->", db_instance)
# -------------------------------------------------------------------------
# Create SQL toolkit.
# -------------------------------------------------------------------------
toolkit_instance = SQLDatabaseToolkit(db=db_instance, llm=llm)
tools_instance = toolkit_instance.get_tools()
# -------------------------------------------------------------------------
# Define workflow nodes and fallback functions.
# -------------------------------------------------------------------------
def first_tool_call(state: State):
return {"messages": [AIMessage(content="", tool_calls=[{"name": "sql_db_list_tables", "args": {}, "id": "tool_abcd123"}])]}
def handle_tool_error(state: State):
tool_calls = state["messages"][-1].tool_calls
return {"messages": [
ToolMessage(content="Error occurred. Please revise.", tool_call_id=tc["id"]) for tc in tool_calls
]}
def create_tool_node_with_fallback(tools_list):
return ToolNode(tools_list).with_fallbacks([RunnableLambda(handle_tool_error)], exception_key="error")
def query_gen_node(state: State):
try:
message = query_gen.invoke(state)
except Exception as e:
raise Exception(f"Exception in query_gen_node: {e}")
tool_messages = []
if message.tool_calls:
for tc in message.tool_calls:
if tc["name"] != "SubmitFinalAnswer":
tool_messages.append(ToolMessage(
content=f"Error: Wrong tool called: {tc['name']}",
tool_call_id=tc["id"]
))
return {"messages": [message] + tool_messages}
def should_continue(state: State) -> Literal[END, "correct_query", "query_gen"]:
messages = state["messages"]
last_message = messages[-1]
if getattr(last_message, "tool_calls", None):
return END
if last_message.content.startswith("Error:"):
return "query_gen"
return "correct_query"
def model_check_query(state: State):
return {"messages": [query_check.invoke({"messages": [state["messages"][-1]]})]}
# -------------------------------------------------------------------------
# Get tools for listing tables and fetching schema.
# -------------------------------------------------------------------------
list_tables_tool = next((t for t in tools_instance if t.name == "sql_db_list_tables"), None)
schema_tool = next((t for t in tools_instance if t.name == "sql_db_schema"), None)
model_get_schema = llm.bind_tools([schema_tool])
workflow = StateGraph(State)
workflow.add_node("first_tool_call", first_tool_call)
workflow.add_node("list_tables_tool", create_tool_node_with_fallback([list_tables_tool]))
workflow.add_node("get_schema_tool", create_tool_node_with_fallback([schema_tool]))
workflow.add_node("model_get_schema", lambda state: {"messages": [model_get_schema.invoke(state["messages"])]})
workflow.add_node("query_gen", query_gen_node)
workflow.add_node("correct_query", model_check_query)
workflow.add_node("execute_query", create_tool_node_with_fallback([db_query_tool]))
workflow.add_edge(START, "first_tool_call")
workflow.add_edge("first_tool_call", "list_tables_tool")
workflow.add_edge("list_tables_tool", "model_get_schema")
workflow.add_edge("model_get_schema", "get_schema_tool")
workflow.add_edge("get_schema_tool", "query_gen")
workflow.add_conditional_edges("query_gen", should_continue)
workflow.add_edge("correct_query", "execute_query")
workflow.add_edge("execute_query", "query_gen")
return workflow.compile()
# =============================================================================
# create_app: The application factory.
# =============================================================================
def create_app():
flask_app = Flask(__name__, static_url_path='/uploads', static_folder='uploads')
socketio = SocketIO(flask_app, cors_allowed_origins="*")
if not os.path.exists(UPLOAD_FOLDER):
os.makedirs(UPLOAD_FOLDER)
flask_app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
flask_app.config['SECRET_KEY'] = os.getenv("FLASK_SECRET_KEY", "mysecretkey")
@flask_app.route("/files/<path:filename>")
def uploaded_file(filename):
try:
return send_from_directory(flask_app.config['UPLOAD_FOLDER'], filename)
except Exception as e:
flash(f"Could not send file: {str(e)}", "error")
return redirect(url_for("index"))
def run_agent(prompt, socketio):
global agent_app, abs_file_path, db_path
if not abs_file_path:
socketio.emit("log", {"message": "[ERROR]: No DB file uploaded."})
socketio.emit("final", {"message": "No database available. Please upload one and try again."})
return
try:
if agent_app is None:
socketio.emit("log", {"message": "[INFO]: Initializing agent for the first time..."})
try:
agent_app = create_agent_app(abs_file_path)
socketio.emit("log", {"message": "[INFO]: Agent initialized."})
except Exception as e:
error_message = f"Agent initialization failed: {str(e)}"
socketio.emit("log", {"message": f"[ERROR]: {error_message}"})
socketio.emit("final", {"message": "Agent initialization failed."})
return
query = {"messages": [("user", prompt)]}
result = agent_app.invoke(query)
try:
# Attempt to extract the final answer from the tool call arguments
if result and result["messages"] and len(result["messages"]) > 0 and result["messages"][-1].tool_calls and len(result["messages"][-1].tool_calls) > 0:
result = result["messages"][-1].tool_calls[0]["args"]["final_answer"]
else:
result = "Query execution did not return a valid final answer."
with app.app_context():
flash("Query execution did not return a valid final answer.", "warning")
except KeyError:
result = "The agent's response did not contain the expected 'final_answer' key."
with app.app_context():
flash("Unexpected agent response format.", "warning")
except Exception as e:
result = f"An error occurred while processing the agent's response: {str(e)}"
with app.app_context():
flash("Error processing agent response.", "error")
print("final_answer------>", result)
socketio.emit("final", {"message": result})
except Exception as e:
error_message = f"Generation failed: {str(e)}"
socketio.emit("log", {"message": f"[ERROR]: {error_message}"})
socketio.emit("final", {"message": "Generation failed."})
with app.app_context():
flash(error_message, "error")
traceback.print_exc()
@flask_app.route("/")
def index():
return render_template("index.html")
@flask_app.route("/generate", methods=["POST"])
def generate():
try:
socketio.emit("log", {"message": "[STEP]: Entering query generation..."})
data = request.json
prompt = data.get("prompt", "")
socketio.emit("log", {"message": f"[INFO]: Received prompt: {prompt}"})
thread = threading.Thread(target=run_agent, args=(prompt, socketio))
socketio.emit("log", {"message": f"[INFO]: Starting thread: {thread}"})
thread.start()
with flask_app.app_context():
flash("Query submitted successfully.", "info")
return "OK", 200
except Exception as e:
error_message = f"[ERROR]: {str(e)}"
socketio.emit("log", {"message": error_message})
with flask_app.app_context():
flash(error_message, "error")
return "ERROR", 500
def is_sqlite_db(file_path):
try:
with open(file_path, 'rb') as f:
header = f.read(16)
return header[:16] == b'SQLite format 3\x00'
except Exception:
return False
@flask_app.route("/upload", methods=["GET", "POST"])
def upload():
global abs_file_path, agent_app, db_path
try:
if request.method == "POST":
file = request.files.get("file")
if not file:
flash("No file uploaded.", "error")
return "No file uploaded", 400
filename = secure_filename(file.filename)
if filename.endswith('.db'):
db_path = os.path.join(flask_app.config['UPLOAD_FOLDER'], "uploaded.db")
print("Saving file to:", db_path)
file.save(db_path)
if not is_sqlite_db(db_path):
os.remove(db_path)
flash("Uploaded file is not a valid SQLite database.", "error")
socketio.emit("log", {"message": "[ERROR]: Invalid database file uploaded."})
return render_template("upload.html")
abs_file_path = os.path.abspath(db_path)
print(f"[INFO]: File '{filename}' uploaded. Agent will be initialized on first query.")
socketio.emit("log", {"message": f"[INFO]: Database file '{filename}' uploaded."})
flash(f"Database file '{filename}' uploaded successfully.", "info")
agent_app = None # Reset the agent to be lazily reinitialized on next query.
return redirect(url_for("index"))
else:
flash("Invalid file format. Please upload a .db file.", "error")
return render_template("upload.html")
return render_template("upload.html")
except Exception as e:
error_message = f"[ERROR]: {str(e)}"
print(error_message)
flash(error_message, "error")
socketio.emit("log", {"message": error_message})
return render_template("upload.html")
return flask_app, socketio
# =============================================================================
# Create the app for Gunicorn compatibility.
# =============================================================================
app, socketio_instance = create_app()
if __name__ == "__main__":
socketio_instance.run(app, debug=True)
|