File size: 18,127 Bytes
ae9b429
34d17cd
942ac66
ae9b429
34d17cd
ae9b429
e585eee
ae9b429
34d17cd
 
ae9b429
 
 
 
 
ffc8eed
ae9b429
 
 
 
 
 
 
 
34d17cd
 
 
ae9b429
34d17cd
 
 
b5158ae
 
fcd7b2b
34d17cd
 
 
e585eee
 
b5158ae
f72d8ff
943da33
e585eee
b5158ae
 
34d17cd
42f9586
e585eee
ac2e91b
ae9b429
5a386b0
ae9b429
 
 
e585eee
42f9586
ae9b429
 
 
 
 
 
 
e585eee
1b44a17
ae9b429
1b44a17
942ac66
 
ae9b429
942ac66
 
e585eee
ae9b429
 
 
e585eee
ae9b429
e585eee
ae9b429
 
 
e585eee
 
 
ae9b429
42f9586
ae9b429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
543ef0b
ae9b429
543ef0b
ae9b429
 
942ac66
ae9b429
942ac66
ae9b429
 
 
 
 
 
 
 
 
 
 
 
b5158ae
ae9b429
e585eee
b5158ae
e585eee
 
b5158ae
e585eee
 
b5158ae
e585eee
 
 
942ac66
 
 
ae9b429
e585eee
 
 
 
 
b5158ae
e585eee
 
 
 
ae9b429
 
 
e585eee
 
 
 
 
 
b5158ae
e585eee
 
ae9b429
 
 
 
b5158ae
 
e585eee
 
 
ae9b429
b5158ae
ae9b429
e585eee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae9b429
 
 
 
 
 
 
 
 
 
 
 
 
 
d7bfcac
ae9b429
942ac66
ae9b429
 
 
 
 
 
 
 
 
 
 
 
543ef0b
 
 
a875426
 
543ef0b
 
 
 
a875426
 
543ef0b
ffc8eed
ae9b429
 
 
543ef0b
 
 
 
 
a875426
 
543ef0b
 
a875426
 
ae9b429
543ef0b
a875426
 
ffc8eed
ae9b429
 
 
 
 
 
a875426
 
ae9b429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffc8eed
 
ae9b429
 
 
 
ffc8eed
 
ae9b429
 
543ef0b
 
 
 
 
 
 
 
ae9b429
 
 
 
 
 
 
 
 
 
 
 
 
942ac66
543ef0b
 
 
 
 
ae9b429
 
942ac66
ae9b429
543ef0b
942ac66
543ef0b
 
 
ae9b429
 
 
 
 
 
 
 
 
 
 
 
 
 
f427793
34d17cd
ae9b429
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
from flask import Flask, render_template, request, redirect, url_for, send_from_directory, flash
from flask_socketio import SocketIO
import threading
import os
from dotenv import load_dotenv
import sqlite3
from werkzeug.utils import secure_filename
import traceback

# LangChain and agent imports
from langchain_community.chat_models.huggingface import ChatHuggingFace  # if needed later
from langchain.agents import Tool
from langchain.agents.format_scratchpad import format_log_to_str
from langchain.agents.output_parsers import ReActJsonSingleInputOutputParser
from langchain_core.callbacks import CallbackManager, BaseCallbackHandler
from langchain_community.agent_toolkits.load_tools import load_tools
from langchain_core.tools import tool
from langchain_community.agent_toolkits import SQLDatabaseToolkit
from langchain.chains import LLMMathChain
from langchain import hub
from langchain_community.tools import DuckDuckGoSearchRun

# Agent requirements and type hints
from typing import Annotated, Literal, TypedDict, Any
from langchain_core.messages import AIMessage, ToolMessage
from pydantic import BaseModel, Field
from typing_extensions import TypedDict
from langgraph.graph import END, StateGraph, START
from langgraph.graph.message import AnyMessage, add_messages
from langchain_core.runnables import RunnableLambda, RunnableWithFallbacks
from langgraph.prebuilt import ToolNode
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.utilities import SQLDatabase

# Load environment variables
load_dotenv()

# Global configuration variables
UPLOAD_FOLDER = os.path.join(os.getcwd(), "uploads")
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
BASE_DIR = os.path.abspath(os.path.dirname(__file__))

# API Keys from .env file
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
os.environ["MISTRAL_API_KEY"] = os.getenv("MISTRAL_API_KEY")

# Global state: dynamic agent and DB file path
agent_app = None
abs_file_path = None
db_path = None

# =============================================================================
# create_agent_app: Given a database path, initialize the agent workflow.
# =============================================================================
def create_agent_app(db_path: str):
    # Use ChatGroq as our LLM here; swap to ChatMistralAI if preferred.
    from langchain_groq import ChatGroq
    llm = ChatGroq(model="llama3-70b-8192")

    # -------------------------------------------------------------------------
    # Define a tool for executing SQL queries, with an explicit description.
    # -------------------------------------------------------------------------
    @tool(description="Executes a SQL query on the connected SQLite database and returns the result.")
    def db_query_tool(query: str) -> str:
        """
        Executes a SQL query on the connected SQLite database.
        """
        try:
            result = db_instance.run_no_throw(query)
            return result if result else "Error: Query failed. Please rewrite your query and try again."
        except Exception as e:
            return f"Error: {str(e)}"

    # -------------------------------------------------------------------------
    # Pydantic model for final answer.
    # -------------------------------------------------------------------------
    class SubmitFinalAnswer(BaseModel):
        final_answer: str = Field(..., description="The final answer to the user")

    # -------------------------------------------------------------------------
    # Define state type for our workflow.
    # -------------------------------------------------------------------------
    class State(TypedDict):
        messages: Annotated[list[AnyMessage], add_messages]

    # -------------------------------------------------------------------------
    # Set up prompt templates for query checking and generation.
    # -------------------------------------------------------------------------
    query_check_system = (
        "You are a SQL expert with a strong attention to detail.\n"
        "Double check the SQLite query for common mistakes, including:\n"
        "- Using NOT IN with NULL values\n"
        "- Using UNION when UNION ALL should have been used\n"
        "- Using BETWEEN for exclusive ranges\n"
        "- Data type mismatch in predicates\n"
        "- Properly quoting identifiers\n"
        "- Using the correct number of arguments for functions\n"
        "- Casting to the correct data type\n"
        "- Using the proper columns for joins\n\n"
        "If there are any of the above mistakes, rewrite the query. If there are no mistakes, just reproduce the original query.\n"
        "You will call the appropriate tool to execute the query after running this check."
    )
    query_check_prompt = ChatPromptTemplate.from_messages([
        ("system", query_check_system),
        ("placeholder", "{messages}")
    ])
    query_check = query_check_prompt | llm.bind_tools([db_query_tool])

    query_gen_system = (
        "You are a SQL expert with a strong attention to detail.\n\n"
        "Given an input question, output a syntactically correct SQLite query to run, then look at the results of the query and return the answer.\n\n"
        "DO NOT call any tool besides SubmitFinalAnswer to submit the final answer.\n\n"
        "When generating the query:\n"
        "Output the SQL query that answers the input question without a tool call.\n"
        "Unless the user specifies a specific number of examples they wish to obtain, always limit your query to at most 5 results.\n"
        "You can order the results by a relevant column to return the most interesting examples in the database.\n"
        "Never query for all the columns from a specific table, only ask for the relevant columns given the question.\n\n"
        "If you get an error while executing a query, rewrite the query and try again.\n"
        "If you get an empty result set, you should try to rewrite the query to get a non-empty result set.\n"
        "NEVER make stuff up if you don't have enough information to answer the query... just say you don't have enough information.\n\n"
        "If you have enough information to answer the input question, simply invoke the appropriate tool to submit the final answer to the user.\n"
        "DO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database. Do not return any SQL query except answer."
    )
    query_gen_prompt = ChatPromptTemplate.from_messages([
        ("system", query_gen_system),
        ("placeholder", "{messages}")
    ])
    query_gen = query_gen_prompt | llm.bind_tools([SubmitFinalAnswer])

    # -------------------------------------------------------------------------
    # Create SQLDatabase connection.
    # -------------------------------------------------------------------------
    db_uri = f"sqlite:///{os.path.abspath(db_path)}"
    print("db_uri", db_uri)

    try:
        db_instance = SQLDatabase.from_uri(db_uri)
    except Exception as e:
        raise Exception(f"Failed to create SQLDatabase connection: {e}")
    print("db_instance----->", db_instance)

    # -------------------------------------------------------------------------
    # Create SQL toolkit.
    # -------------------------------------------------------------------------
    toolkit_instance = SQLDatabaseToolkit(db=db_instance, llm=llm)
    tools_instance = toolkit_instance.get_tools()

    # -------------------------------------------------------------------------
    # Define workflow nodes and fallback functions.
    # -------------------------------------------------------------------------
    def first_tool_call(state: State):
        return {"messages": [AIMessage(content="", tool_calls=[{"name": "sql_db_list_tables", "args": {}, "id": "tool_abcd123"}])]}

    def handle_tool_error(state: State):
        tool_calls = state["messages"][-1].tool_calls
        return {"messages": [
            ToolMessage(content="Error occurred. Please revise.", tool_call_id=tc["id"]) for tc in tool_calls
        ]}

    def create_tool_node_with_fallback(tools_list):
        return ToolNode(tools_list).with_fallbacks([RunnableLambda(handle_tool_error)], exception_key="error")

    def query_gen_node(state: State):
        try:
            message = query_gen.invoke(state)
        except Exception as e:
            raise Exception(f"Exception in query_gen_node: {e}")
        tool_messages = []
        if message.tool_calls:
            for tc in message.tool_calls:
                if tc["name"] != "SubmitFinalAnswer":
                    tool_messages.append(ToolMessage(
                        content=f"Error: Wrong tool called: {tc['name']}",
                        tool_call_id=tc["id"]
                    ))
        return {"messages": [message] + tool_messages}

    def should_continue(state: State) -> Literal[END, "correct_query", "query_gen"]:
        messages = state["messages"]
        last_message = messages[-1]
        if getattr(last_message, "tool_calls", None):
            return END
        if last_message.content.startswith("Error:"):
            return "query_gen"
        return "correct_query"

    def model_check_query(state: State):
        return {"messages": [query_check.invoke({"messages": [state["messages"][-1]]})]}

    # -------------------------------------------------------------------------
    # Get tools for listing tables and fetching schema.
    # -------------------------------------------------------------------------
    list_tables_tool = next((t for t in tools_instance if t.name == "sql_db_list_tables"), None)
    schema_tool = next((t for t in tools_instance if t.name == "sql_db_schema"), None)
    model_get_schema = llm.bind_tools([schema_tool])

    workflow = StateGraph(State)
    workflow.add_node("first_tool_call", first_tool_call)
    workflow.add_node("list_tables_tool", create_tool_node_with_fallback([list_tables_tool]))
    workflow.add_node("get_schema_tool", create_tool_node_with_fallback([schema_tool]))
    workflow.add_node("model_get_schema", lambda state: {"messages": [model_get_schema.invoke(state["messages"])]})
    workflow.add_node("query_gen", query_gen_node)
    workflow.add_node("correct_query", model_check_query)
    workflow.add_node("execute_query", create_tool_node_with_fallback([db_query_tool]))

    workflow.add_edge(START, "first_tool_call")
    workflow.add_edge("first_tool_call", "list_tables_tool")
    workflow.add_edge("list_tables_tool", "model_get_schema")
    workflow.add_edge("model_get_schema", "get_schema_tool")
    workflow.add_edge("get_schema_tool", "query_gen")
    workflow.add_conditional_edges("query_gen", should_continue)
    workflow.add_edge("correct_query", "execute_query")
    workflow.add_edge("execute_query", "query_gen")

    return workflow.compile()

# =============================================================================
# create_app: The application factory.
# =============================================================================
def create_app():
    flask_app = Flask(__name__, static_url_path='/uploads', static_folder='uploads')
    socketio = SocketIO(flask_app, cors_allowed_origins="*")

    if not os.path.exists(UPLOAD_FOLDER):
        os.makedirs(UPLOAD_FOLDER)
    flask_app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
    flask_app.config['SECRET_KEY'] = os.getenv("FLASK_SECRET_KEY", "mysecretkey")

    @flask_app.route("/files/<path:filename>")
    def uploaded_file(filename):
        try:
            return send_from_directory(flask_app.config['UPLOAD_FOLDER'], filename)
        except Exception as e:
            flash(f"Could not send file: {str(e)}", "error")
            return redirect(url_for("index"))

    def run_agent(prompt, socketio):
        global agent_app, abs_file_path, db_path
        if not abs_file_path:
            socketio.emit("log", {"message": "[ERROR]: No DB file uploaded."})
            socketio.emit("final", {"message": "No database available. Please upload one and try again."})
            return
        try:
            if agent_app is None:
                socketio.emit("log", {"message": "[INFO]: Initializing agent for the first time..."})
                try:
                    agent_app = create_agent_app(abs_file_path)
                    socketio.emit("log", {"message": "[INFO]: Agent initialized."})
                    with app.app_context():
                        flash("Agent initialized.", "info")
                except Exception as e:
                    error_message = f"Agent initialization failed: {str(e)}"
                    socketio.emit("log", {"message": f"[ERROR]: {error_message}"})
                    socketio.emit("final", {"message": "Agent initialization failed."})
                    with app.app_context():
                        flash(error_message, "error")
                    return

            query = {"messages": [("user", prompt)]}
            result = agent_app.invoke(query)
            try:
                # Attempt to extract the final answer from the tool call arguments
                if result and result["messages"] and len(result["messages"]) > 0 and result["messages"][-1].tool_calls and len(result["messages"][-1].tool_calls) > 0:
                    result = result["messages"][-1].tool_calls[0]["args"]["final_answer"]
                else:
                    result = "Query execution did not return a valid final answer."
                    with app.app_context():
                        flash("Query execution did not return a valid final answer.", "warning")
            except KeyError:
                result = "The agent's response did not contain the expected 'final_answer' key."
                with app.app_context():
                    flash("Unexpected agent response format.", "warning")
            except Exception as e:
                result = f"An error occurred while processing the agent's response: {str(e)}"
                with app.app_context():
                    flash("Error processing agent response.", "error")

            print("final_answer------>", result)
            socketio.emit("final", {"message": result})
        except Exception as e:
            error_message = f"Generation failed: {str(e)}"
            socketio.emit("log", {"message": f"[ERROR]: {error_message}"})
            socketio.emit("final", {"message": "Generation failed."})
            with app.app_context():
                flash(error_message, "error")
            traceback.print_exc()

    @flask_app.route("/")
    def index():
        return render_template("index.html")

    @flask_app.route("/generate", methods=["POST"])
    def generate():
        try:
            socketio.emit("log", {"message": "[STEP]: Entering query generation..."})
            data = request.json
            prompt = data.get("prompt", "")
            socketio.emit("log", {"message": f"[INFO]: Received prompt: {prompt}"})
            thread = threading.Thread(target=run_agent, args=(prompt, socketio))
            socketio.emit("log", {"message": f"[INFO]: Starting thread: {thread}"})
            thread.start()
            with flask_app.app_context():
                flash("Query submitted successfully.", "info")
            return "OK", 200
        except Exception as e:
            error_message = f"[ERROR]: {str(e)}"
            socketio.emit("log", {"message": error_message})
            with flask_app.app_context():
                flash(error_message, "error")
            return "ERROR", 500

    def is_sqlite_db(file_path):
        try:
            with open(file_path, 'rb') as f:
                header = f.read(16)
                return header[:16] == b'SQLite format 3\x00'
        except Exception:
            return False

    @flask_app.route("/upload", methods=["GET", "POST"])
    def upload():
        global abs_file_path, agent_app, db_path
        try:
            if request.method == "POST":
                file = request.files.get("file")
                if not file:
                    flash("No file uploaded.", "error")
                    return "No file uploaded", 400
                filename = secure_filename(file.filename)
                if filename.endswith('.db'):
                    db_path = os.path.join(flask_app.config['UPLOAD_FOLDER'], "uploaded.db")
                    print("Saving file to:", db_path)
                    file.save(db_path)
                    if not is_sqlite_db(db_path):
                        os.remove(db_path)
                        flash("Uploaded file is not a valid SQLite database.", "error")
                        socketio.emit("log", {"message": "[ERROR]: Invalid database file uploaded."})
                        return render_template("upload.html")
                    abs_file_path = os.path.abspath(db_path)
                    print(f"[INFO]: File '{filename}' uploaded. Agent will be initialized on first query.")
                    socketio.emit("log", {"message": f"[INFO]: Database file '{filename}' uploaded."})
                    flash(f"Database file '{filename}' uploaded successfully.", "info")
                    agent_app = None   # Reset the agent to be lazily reinitialized on next query.
                    return redirect(url_for("index"))
                else:
                    flash("Invalid file format. Please upload a .db file.", "error")
                    return render_template("upload.html")
            return render_template("upload.html")
        except Exception as e:
            error_message = f"[ERROR]: {str(e)}"
            print(error_message)
            flash(error_message, "error")
            socketio.emit("log", {"message": error_message})
            return render_template("upload.html")

    return flask_app, socketio

# =============================================================================
# Create the app for Gunicorn compatibility.
# =============================================================================
app, socketio_instance = create_app()

if __name__ == "__main__":
    socketio_instance.run(app, debug=True)