DHRUV SHEKHAWAT commited on
Commit
8541da5
·
1 Parent(s): f1215a7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -60
app.py CHANGED
@@ -41,7 +41,6 @@ class TransformerChatbot(Model):
41
  def create_padding_mask(self, seq):
42
  mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
43
  return mask[:, tf.newaxis, tf.newaxis, :]
44
-
45
  st.title("UniGLM TEXT completion Model")
46
  st.subheader("Next Word Prediction AI Model by Webraft-AI")
47
  #Picking what NLP task you want to do
@@ -126,66 +125,7 @@ elif option=="26M_OLD":
126
  len2 = 1
127
  else:
128
  len2 = 13
129
- vocab_size = 100000
130
- max_len = 1
131
- d_model = 128 # 64 , 1024
132
- n_head = 4 # 8 , 16
133
- ff_dim = 256 # 256 , 2048
134
- dropout_rate = 0.1 # 0.5 , 0.2
135
- weights = "predict1"
136
- datafile = "data2.txt"
137
- dict = "dict_predict1.bin.npz"
138
-
139
- with open(datafile,"r") as f:
140
- text = f.read()
141
- text = text.lower()
142
- words = text.split()
143
- loaded_dict = np.load(dict, allow_pickle=True)
144
- word_to_num = loaded_dict["word_to_num"].item()
145
- num_to_word = loaded_dict["num_to_word"].item()
146
- X = []
147
- Y = []
148
- for i in range(len(words)-1):
149
- word = words[i]
150
- next_word = words[i+1]
151
- X.append(word_to_num[word])
152
- Y.append(word_to_num[next_word])
153
- Y.append(0)
154
-
155
- X.append(word_to_num[words[-1]])
156
- X_train = pad_sequences([X])
157
- y_train = pad_sequences([Y])
158
 
159
-
160
-
161
- chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
162
- chatbot.load_weights(weights)
163
- chatbot.build(input_shape=(None, max_len)) # Build the model
164
- chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
165
- chatbot.fit(X_train, y_train, epochs=1, batch_size=64)
166
- for i in range(1):
167
- other_text2 = text2
168
- other_text2 = other_text2.lower()
169
- other_words2 = other_text2.split()
170
- other_num2 = [word_to_num[word] for word in other_words2]
171
- given_X2 = other_num2
172
- input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')
173
- output_sentence = other_text2 + ""
174
- for _ in range(len2):
175
- predicted_token = np.argmax(chatbot.predict(input_sequence2), axis=-1)
176
- predicted_token = predicted_token.item()
177
- out = num_to_word[predicted_token]
178
- # if out == ".":
179
- # break
180
-
181
- output_sentence += " " + out
182
- given_X2 = given_X2[1:]
183
- given_X2.append(predicted_token)
184
- input_sequence2 = pad_sequences([given_X2], maxlen=max_len, padding='post')
185
-
186
- out2 = output_sentence
187
- st.write("Predicted Text: ")
188
- st.write(out2)
189
  else:
190
  out2 = "Error: Wrong Model Selected"
191
 
 
41
  def create_padding_mask(self, seq):
42
  mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
43
  return mask[:, tf.newaxis, tf.newaxis, :]
 
44
  st.title("UniGLM TEXT completion Model")
45
  st.subheader("Next Word Prediction AI Model by Webraft-AI")
46
  #Picking what NLP task you want to do
 
125
  len2 = 1
126
  else:
127
  len2 = 13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
  else:
130
  out2 = "Error: Wrong Model Selected"
131