File size: 6,167 Bytes
6e74d23
 
 
 
13a0aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16d5ad7
 
 
 
 
 
13a0aa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#""" Simple Chatbot
#@author: Nigel Gebodh
#@email: [email protected]
#"""
""" Simple Chatbot
@author: Wedyan2023
@email: [email protected]
"""

import numpy as np
import streamlit as st
from openai import OpenAI
import os
from dotenv import load_dotenv
import random
os.environ["BROWSER_GATHERUSAGESTATS"] = "false"

load_dotenv()
## Embedding Using Huggingface
#huggingface_embeddings=HuggingFaceBgeEmbeddings(
    #model_name="BAAI/bge-small-en-v1.5",      #sentence-transformers/all-MiniLM-l6-v2
    #model_kwargs={'device':'cpu'},
    #encode_kwargs={'normalize_embeddings':True}

#)

# Initialize the client
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1",
    #api_key=os.environ.get('HUGGINGFACE_API_TOKEN')  # Add your Huggingface token here
    api_key=os.environ.get('HF_TOKEN')  # Add your Huggingface token here  
)

# Supported models
model_links = {
    "Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct"
}

# Random dog images for error messages
random_dog = [
    "0f476473-2d8b-415e-b944-483768418a95.jpg",
    "1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
    "526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
   "1326984c-39b0-492c-a773-f120d747a7e2.jpg"
]

# Reset conversation
def reset_conversation():
    st.session_state.conversation = []
    st.session_state.messages = []
    return None

# Define the available models
models = [key for key in model_links.keys()]

# Sidebar for model selection
selected_model = st.sidebar.selectbox("Select Model", models)

# Temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)

# Reset button
st.sidebar.button('Reset Chat', on_click=reset_conversation)

# Model description
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown("*Generated content may be inaccurate or false.*")

# Chat initialization
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Main logic to choose between data generation and data labeling
task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"])

if task_choice == "Data Generation":
    classification_type = st.selectbox(
        "Choose Classification Type",
        ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
    )

    if classification_type == "Sentiment Analysis":
        st.write("Sentiment Analysis: Positive, Negative, Neutral")
        labels = ["Positive", "Negative", "Neutral"]
    elif classification_type == "Binary Classification":
        label_1 = st.text_input("Enter first class")
        label_2 = st.text_input("Enter second class")
        labels = [label_1, label_2]
    elif classification_type == "Multi-Class Classification":
        num_classes = st.slider("How many classes?", 3, 10, 3)
        labels = [st.text_input(f"Class {i+1}") for i in range(num_classes)]

    domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
    if domain == "Custom":
        domain = st.text_input("Specify custom domain")

    min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10)
    max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90)

    few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"])
    if few_shot == "Yes":
        num_examples = st.slider("How many few-shot examples?", 1, 5, 1)
        few_shot_examples = [
            {"content": st.text_area(f"Example {i+1}"), "label": st.selectbox(f"Label for example {i+1}", labels)}
            for i in range(num_examples)
        ]
    else:
        few_shot_examples = []

    # Ask the user how many examples they need
    num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=100, value=10)

    # User prompt text field
    user_prompt = st.text_area("Enter your prompt to guide example generation", "")

    # System prompt generation
    system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n"
    if few_shot_examples:
        system_prompt += "Use the following few-shot examples as a reference:\n"
        for example in few_shot_examples:
            system_prompt += f"Example: {example['content']} \n Label: {example['label']}\n"
    system_prompt += f"Generate {num_to_generate} unique examples with diverse phrasing.\n"
    system_prompt += f"Each example should have between {min_words} and {max_words} words.\n"
    system_prompt += f"Use the labels specified: {', '.join(labels)}.\n"
    if user_prompt:
        system_prompt += f"Additional instructions: {user_prompt}\n"

    st.write("System Prompt:")
    st.code(system_prompt)

    if st.button("Generate Examples"):
        # Generate examples by concatenating all inputs and sending it to the model
        with st.spinner("Generating..."):
            st.session_state.messages.append({"role": "system", "content": system_prompt})

            try:
                stream = client.chat.completions.create(
                    model=model_links[selected_model],
                    messages=[
                        {"role": m["role"], "content": m["content"]}
                        for m in st.session_state.messages
                    ],
                    temperature=temp_values,
                    stream=True,
                    max_tokens=3000,
                )
                response = st.write_stream(stream)
            except Exception as e:
                response = "Error during generation."
                random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
                st.image(random_dog_pick)
                st.write(e)

            st.session_state.messages.append({"role": "assistant", "content": response})

else:
    # Data labeling workflow (for future implementation based on classification)
    st.write("Data Labeling functionality will go here.")