Spaces:
Sleeping
Sleeping
File size: 8,641 Bytes
255f60b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
### اول كود للابيلنق اشتغل بس مافرق بين ريكوند و نت ريكومند
import numpy as np
import streamlit as st
from openai import OpenAI
import os
from dotenv import load_dotenv
import random
# Load environment variables
os.environ["BROWSER_GATHERUSAGESTATS"] = "false"
load_dotenv()
# Initialize the client
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1",
api_key=os.environ.get('GP2') # Replace with your Huggingface token
)
# Initialize session state variables if they are not already defined
if "labels" not in st.session_state:
st.session_state.labels = []
if "few_shot_examples" not in st.session_state:
st.session_state.few_shot_examples = []
if "examples_to_classify" not in st.session_state:
st.session_state.examples_to_classify = []
if "messages" not in st.session_state:
st.session_state.messages = []
# Sidebar for model selection and temperature setting
selected_model = st.sidebar.selectbox("Select Model", ["Meta-Llama-3-8B"], key="model_select")
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5, key="temp_slider")
# Reset conversation button
st.sidebar.button('Reset Chat', on_click=lambda: (st.session_state.update(conversation=[], messages=[])), key="reset_button")
# Main task selection: Data Generation or Data Labeling
task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"], key="task_choice_select")
# Data Generation Section
if task_choice == "Data Generation":
classification_type = st.selectbox(
"Choose Classification Type",
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"],
key="classification_type_select"
)
# Define labels based on classification type
if classification_type == "Sentiment Analysis":
st.session_state.labels = ["Positive", "Negative", "Neutral"]
st.write("Sentiment Analysis: Positive, Negative, Neutral")
elif classification_type == "Binary Classification":
label_1 = st.text_input("Enter first class", key="binary_class_1")
label_2 = st.text_input("Enter second class", key="binary_class_2")
st.session_state.labels = [label_1, label_2]
elif classification_type == "Multi-Class Classification":
num_classes = st.slider("How many classes?", 3, 10, 3, key="num_classes_slider")
st.session_state.labels = [st.text_input(f"Class {i+1}", key=f"class_input_{i+1}") for i in range(num_classes)]
# Domain selection
domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"], key="domain_select")
if domain == "Custom":
domain = st.text_input("Specify custom domain", key="custom_domain_input")
# Word count selection
min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10, key="min_words_input")
max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90, key="max_words_input")
# Few-shot examples option
few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"], key="few_shot_radio")
if few_shot == "Yes":
num_examples = st.slider("How many few-shot examples?", 1, 5, 1, key="num_examples_slider")
st.session_state.few_shot_examples = [
{
"content": st.text_area(f"Example {i+1} Text", key=f"example_text_{i+1}"),
"label": st.selectbox(f"Label for Example {i+1}", st.session_state.labels, key=f"label_select_{i+1}")
}
for i in range(num_examples)
]
else:
st.session_state.few_shot_examples = []
# Number of examples to generate
num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=100, value=10, key="num_to_generate_input")
# User prompt text field
user_prompt = st.text_area("Enter your prompt to guide example generation", "", key="user_prompt_text_area")
# System prompt generation
system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n"
if st.session_state.few_shot_examples:
system_prompt += "Use the following few-shot examples as a reference:\n"
for example in st.session_state.few_shot_examples:
system_prompt += f"Example: {example['content']} \n Label: {example['label']}\n"
system_prompt += f"Generate {num_to_generate} unique examples with diverse phrasing.\n"
system_prompt += f"Each example should have between {min_words} and {max_words} words.\n"
system_prompt += f"Use the labels specified: {', '.join(st.session_state.labels)}.\n"
if user_prompt:
system_prompt += f"Additional instructions: {user_prompt}\n"
st.write("System Prompt:")
st.code(system_prompt)
if st.button("Generate Examples", key="generate_examples_button"):
# Generate examples by concatenating all inputs and sending it to the model
with st.spinner("Generating..."):
st.session_state.messages.append({"role": "system", "content": system_prompt})
try:
stream = client.chat.completions.create(
model=selected_model,
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
temperature=temp_values,
stream=True,
max_tokens=3000,
)
response = ""
for chunk in stream:
response += chunk['choices'][0]['delta'].get('content', '')
st.write(response)
except Exception as e:
st.error(f"Error during generation: {e}")
st.session_state.messages.append({"role": "assistant", "content": response})
# Data Labeling Section
else:
# Classification Type and Labels Setup
classification_type = st.selectbox("Choose Classification Type", ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"], key="classification_type_labeling")
if classification_type == "Sentiment Analysis":
st.session_state.labels = ["Positive", "Negative", "Neutral"]
st.write("Sentiment Analysis labels: Positive, Negative, Neutral")
elif classification_type == "Binary Classification":
label_1 = st.text_input("Enter first class", key="binary_class_1_labeling")
label_2 = st.text_input("Enter second class", key="binary_class_2_labeling")
st.session_state.labels = [label_1, label_2]
elif classification_type == "Multi-Class Classification":
num_classes = st.slider("How many classes?", 3, 10, 3, key="num_classes_labeling")
st.session_state.labels = [st.text_input(f"Class {i+1}", key=f"class_input_labeling_{i+1}") for i in range(num_classes)]
# Few-shot examples for labeling
use_few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"], key="use_few_shot_labeling")
if use_few_shot == "Yes":
num_examples = st.slider("How many few-shot examples?", 1, 5, 1, key="few_shot_num_labeling")
st.session_state.few_shot_examples = [
{
"content": st.text_area(f"Example {i+1} Text", key=f"example_text_labeling_{i+1}"),
"label": st.selectbox(f"Label for Example {i+1}", st.session_state.labels, key=f"label_select_labeling_{i+1}")
}
for i in range(num_examples)
]
else:
st.session_state.few_shot_examples = []
# Input Examples for Classification
num_to_classify = st.number_input("How many examples do you want to classify?", min_value=1, max_value=100, value=5, key="num_to_classify_input")
st.session_state.examples_to_classify = [st.text_area(f"Example {i+1} Text", key=f"example_classify_text_{i+1}") for i in range(num_to_classify)]
# Placeholder for classification function (can be replaced with actual API call)
def classify_examples(examples, labels):
classified_results = [{"example": ex, "label": random.choice(labels)} for ex in examples]
return classified_results
# Classification results display
if st.button("Classify Examples", key="classify_button"):
results = classify_examples(st.session_state.examples_to_classify, st.session_state.labels)
st.write("Classification Results:")
for result in results:
st.write(f"Example: {result['example']}\nLabel: {result['label']}\n")
شحح |