|
|
|
import numpy as np |
|
import streamlit as st |
|
from openai import OpenAI |
|
import os |
|
from dotenv import load_dotenv |
|
import random |
|
|
|
|
|
os.environ["BROWSER_GATHERUSAGESTATS"] = "false" |
|
load_dotenv() |
|
|
|
|
|
client = OpenAI( |
|
base_url="https://api-inference.huggingface.co/v1", |
|
api_key=os.environ.get('GP2') |
|
) |
|
|
|
|
|
if "labels" not in st.session_state: |
|
st.session_state.labels = [] |
|
if "few_shot_examples" not in st.session_state: |
|
st.session_state.few_shot_examples = [] |
|
if "examples_to_classify" not in st.session_state: |
|
st.session_state.examples_to_classify = [] |
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
|
|
selected_model = st.sidebar.selectbox("Select Model", ["Meta-Llama-3-8B"], key="model_select") |
|
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5, key="temp_slider") |
|
|
|
|
|
st.sidebar.button('Reset Chat', on_click=lambda: (st.session_state.update(conversation=[], messages=[])), key="reset_button") |
|
|
|
|
|
task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"], key="task_choice_select") |
|
|
|
|
|
if task_choice == "Data Generation": |
|
classification_type = st.selectbox( |
|
"Choose Classification Type", |
|
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"], |
|
key="classification_type_select" |
|
) |
|
|
|
|
|
if classification_type == "Sentiment Analysis": |
|
st.session_state.labels = ["Positive", "Negative", "Neutral"] |
|
st.write("Sentiment Analysis: Positive, Negative, Neutral") |
|
elif classification_type == "Binary Classification": |
|
label_1 = st.text_input("Enter first class", key="binary_class_1") |
|
label_2 = st.text_input("Enter second class", key="binary_class_2") |
|
st.session_state.labels = [label_1, label_2] |
|
elif classification_type == "Multi-Class Classification": |
|
num_classes = st.slider("How many classes?", 3, 10, 3, key="num_classes_slider") |
|
st.session_state.labels = [st.text_input(f"Class {i+1}", key=f"class_input_{i+1}") for i in range(num_classes)] |
|
|
|
|
|
domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"], key="domain_select") |
|
if domain == "Custom": |
|
domain = st.text_input("Specify custom domain", key="custom_domain_input") |
|
|
|
|
|
min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10, key="min_words_input") |
|
max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90, key="max_words_input") |
|
|
|
|
|
few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"], key="few_shot_radio") |
|
if few_shot == "Yes": |
|
num_examples = st.slider("How many few-shot examples?", 1, 5, 1, key="num_examples_slider") |
|
st.session_state.few_shot_examples = [ |
|
{ |
|
"content": st.text_area(f"Example {i+1} Text", key=f"example_text_{i+1}"), |
|
"label": st.selectbox(f"Label for Example {i+1}", st.session_state.labels, key=f"label_select_{i+1}") |
|
} |
|
for i in range(num_examples) |
|
] |
|
else: |
|
st.session_state.few_shot_examples = [] |
|
|
|
|
|
num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=100, value=10, key="num_to_generate_input") |
|
|
|
|
|
user_prompt = st.text_area("Enter your prompt to guide example generation", "", key="user_prompt_text_area") |
|
|
|
|
|
system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n" |
|
if st.session_state.few_shot_examples: |
|
system_prompt += "Use the following few-shot examples as a reference:\n" |
|
for example in st.session_state.few_shot_examples: |
|
system_prompt += f"Example: {example['content']} \n Label: {example['label']}\n" |
|
system_prompt += f"Generate {num_to_generate} unique examples with diverse phrasing.\n" |
|
system_prompt += f"Each example should have between {min_words} and {max_words} words.\n" |
|
system_prompt += f"Use the labels specified: {', '.join(st.session_state.labels)}.\n" |
|
if user_prompt: |
|
system_prompt += f"Additional instructions: {user_prompt}\n" |
|
|
|
st.write("System Prompt:") |
|
st.code(system_prompt) |
|
|
|
if st.button("Generate Examples", key="generate_examples_button"): |
|
|
|
with st.spinner("Generating..."): |
|
st.session_state.messages.append({"role": "system", "content": system_prompt}) |
|
|
|
try: |
|
stream = client.chat.completions.create( |
|
model=selected_model, |
|
messages=[ |
|
{"role": m["role"], "content": m["content"]} |
|
for m in st.session_state.messages |
|
], |
|
temperature=temp_values, |
|
stream=True, |
|
max_tokens=3000, |
|
) |
|
response = "" |
|
for chunk in stream: |
|
response += chunk['choices'][0]['delta'].get('content', '') |
|
st.write(response) |
|
except Exception as e: |
|
st.error(f"Error during generation: {e}") |
|
|
|
st.session_state.messages.append({"role": "assistant", "content": response}) |
|
|
|
|
|
else: |
|
|
|
classification_type = st.selectbox("Choose Classification Type", ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"], key="classification_type_labeling") |
|
|
|
if classification_type == "Sentiment Analysis": |
|
st.session_state.labels = ["Positive", "Negative", "Neutral"] |
|
st.write("Sentiment Analysis labels: Positive, Negative, Neutral") |
|
elif classification_type == "Binary Classification": |
|
label_1 = st.text_input("Enter first class", key="binary_class_1_labeling") |
|
label_2 = st.text_input("Enter second class", key="binary_class_2_labeling") |
|
st.session_state.labels = [label_1, label_2] |
|
elif classification_type == "Multi-Class Classification": |
|
num_classes = st.slider("How many classes?", 3, 10, 3, key="num_classes_labeling") |
|
st.session_state.labels = [st.text_input(f"Class {i+1}", key=f"class_input_labeling_{i+1}") for i in range(num_classes)] |
|
|
|
|
|
use_few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"], key="use_few_shot_labeling") |
|
if use_few_shot == "Yes": |
|
num_examples = st.slider("How many few-shot examples?", 1, 5, 1, key="few_shot_num_labeling") |
|
st.session_state.few_shot_examples = [ |
|
{ |
|
"content": st.text_area(f"Example {i+1} Text", key=f"example_text_labeling_{i+1}"), |
|
"label": st.selectbox(f"Label for Example {i+1}", st.session_state.labels, key=f"label_select_labeling_{i+1}") |
|
} |
|
for i in range(num_examples) |
|
] |
|
else: |
|
st.session_state.few_shot_examples = [] |
|
|
|
|
|
num_to_classify = st.number_input("How many examples do you want to classify?", min_value=1, max_value=100, value=5, key="num_to_classify_input") |
|
st.session_state.examples_to_classify = [st.text_area(f"Example {i+1} Text", key=f"example_classify_text_{i+1}") for i in range(num_to_classify)] |
|
|
|
|
|
def classify_examples(examples, labels): |
|
classified_results = [{"example": ex, "label": random.choice(labels)} for ex in examples] |
|
return classified_results |
|
|
|
|
|
if st.button("Classify Examples", key="classify_button"): |
|
results = classify_examples(st.session_state.examples_to_classify, st.session_state.labels) |
|
st.write("Classification Results:") |
|
for result in results: |
|
st.write(f"Example: {result['example']}\nLabel: {result['label']}\n") |
|
شحح |