Spaces:
Sleeping
Sleeping
### ุงูู ููุฏ ููุงุจูููู ุงุดุชุบู ุจุณ ู ุงูุฑู ุจูู ุฑููููุฏ ู ูุช ุฑูููู ูุฏ | |
import numpy as np | |
import streamlit as st | |
from openai import OpenAI | |
import os | |
from dotenv import load_dotenv | |
import random | |
# Load environment variables | |
os.environ["BROWSER_GATHERUSAGESTATS"] = "false" | |
load_dotenv() | |
# Initialize the client | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1", | |
api_key=os.environ.get('GP2') # Replace with your Huggingface token | |
) | |
# Initialize session state variables if they are not already defined | |
if "labels" not in st.session_state: | |
st.session_state.labels = [] | |
if "few_shot_examples" not in st.session_state: | |
st.session_state.few_shot_examples = [] | |
if "examples_to_classify" not in st.session_state: | |
st.session_state.examples_to_classify = [] | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Sidebar for model selection and temperature setting | |
selected_model = st.sidebar.selectbox("Select Model", ["Meta-Llama-3-8B"], key="model_select") | |
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5, key="temp_slider") | |
# Reset conversation button | |
st.sidebar.button('Reset Chat', on_click=lambda: (st.session_state.update(conversation=[], messages=[])), key="reset_button") | |
# Main task selection: Data Generation or Data Labeling | |
task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"], key="task_choice_select") | |
# Data Generation Section | |
if task_choice == "Data Generation": | |
classification_type = st.selectbox( | |
"Choose Classification Type", | |
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"], | |
key="classification_type_select" | |
) | |
# Define labels based on classification type | |
if classification_type == "Sentiment Analysis": | |
st.session_state.labels = ["Positive", "Negative", "Neutral"] | |
st.write("Sentiment Analysis: Positive, Negative, Neutral") | |
elif classification_type == "Binary Classification": | |
label_1 = st.text_input("Enter first class", key="binary_class_1") | |
label_2 = st.text_input("Enter second class", key="binary_class_2") | |
st.session_state.labels = [label_1, label_2] | |
elif classification_type == "Multi-Class Classification": | |
num_classes = st.slider("How many classes?", 3, 10, 3, key="num_classes_slider") | |
st.session_state.labels = [st.text_input(f"Class {i+1}", key=f"class_input_{i+1}") for i in range(num_classes)] | |
# Domain selection | |
domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"], key="domain_select") | |
if domain == "Custom": | |
domain = st.text_input("Specify custom domain", key="custom_domain_input") | |
# Word count selection | |
min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10, key="min_words_input") | |
max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90, key="max_words_input") | |
# Few-shot examples option | |
few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"], key="few_shot_radio") | |
if few_shot == "Yes": | |
num_examples = st.slider("How many few-shot examples?", 1, 5, 1, key="num_examples_slider") | |
st.session_state.few_shot_examples = [ | |
{ | |
"content": st.text_area(f"Example {i+1} Text", key=f"example_text_{i+1}"), | |
"label": st.selectbox(f"Label for Example {i+1}", st.session_state.labels, key=f"label_select_{i+1}") | |
} | |
for i in range(num_examples) | |
] | |
else: | |
st.session_state.few_shot_examples = [] | |
# Number of examples to generate | |
num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=100, value=10, key="num_to_generate_input") | |
# User prompt text field | |
user_prompt = st.text_area("Enter your prompt to guide example generation", "", key="user_prompt_text_area") | |
# System prompt generation | |
system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n" | |
if st.session_state.few_shot_examples: | |
system_prompt += "Use the following few-shot examples as a reference:\n" | |
for example in st.session_state.few_shot_examples: | |
system_prompt += f"Example: {example['content']} \n Label: {example['label']}\n" | |
system_prompt += f"Generate {num_to_generate} unique examples with diverse phrasing.\n" | |
system_prompt += f"Each example should have between {min_words} and {max_words} words.\n" | |
system_prompt += f"Use the labels specified: {', '.join(st.session_state.labels)}.\n" | |
if user_prompt: | |
system_prompt += f"Additional instructions: {user_prompt}\n" | |
st.write("System Prompt:") | |
st.code(system_prompt) | |
if st.button("Generate Examples", key="generate_examples_button"): | |
# Generate examples by concatenating all inputs and sending it to the model | |
with st.spinner("Generating..."): | |
st.session_state.messages.append({"role": "system", "content": system_prompt}) | |
try: | |
stream = client.chat.completions.create( | |
model=selected_model, | |
messages=[ | |
{"role": m["role"], "content": m["content"]} | |
for m in st.session_state.messages | |
], | |
temperature=temp_values, | |
stream=True, | |
max_tokens=3000, | |
) | |
response = "" | |
for chunk in stream: | |
response += chunk['choices'][0]['delta'].get('content', '') | |
st.write(response) | |
except Exception as e: | |
st.error(f"Error during generation: {e}") | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
# Data Labeling Section | |
else: | |
# Classification Type and Labels Setup | |
classification_type = st.selectbox("Choose Classification Type", ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"], key="classification_type_labeling") | |
if classification_type == "Sentiment Analysis": | |
st.session_state.labels = ["Positive", "Negative", "Neutral"] | |
st.write("Sentiment Analysis labels: Positive, Negative, Neutral") | |
elif classification_type == "Binary Classification": | |
label_1 = st.text_input("Enter first class", key="binary_class_1_labeling") | |
label_2 = st.text_input("Enter second class", key="binary_class_2_labeling") | |
st.session_state.labels = [label_1, label_2] | |
elif classification_type == "Multi-Class Classification": | |
num_classes = st.slider("How many classes?", 3, 10, 3, key="num_classes_labeling") | |
st.session_state.labels = [st.text_input(f"Class {i+1}", key=f"class_input_labeling_{i+1}") for i in range(num_classes)] | |
# Few-shot examples for labeling | |
use_few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"], key="use_few_shot_labeling") | |
if use_few_shot == "Yes": | |
num_examples = st.slider("How many few-shot examples?", 1, 5, 1, key="few_shot_num_labeling") | |
st.session_state.few_shot_examples = [ | |
{ | |
"content": st.text_area(f"Example {i+1} Text", key=f"example_text_labeling_{i+1}"), | |
"label": st.selectbox(f"Label for Example {i+1}", st.session_state.labels, key=f"label_select_labeling_{i+1}") | |
} | |
for i in range(num_examples) | |
] | |
else: | |
st.session_state.few_shot_examples = [] | |
# Input Examples for Classification | |
num_to_classify = st.number_input("How many examples do you want to classify?", min_value=1, max_value=100, value=5, key="num_to_classify_input") | |
st.session_state.examples_to_classify = [st.text_area(f"Example {i+1} Text", key=f"example_classify_text_{i+1}") for i in range(num_to_classify)] | |
# Placeholder for classification function (can be replaced with actual API call) | |
def classify_examples(examples, labels): | |
classified_results = [{"example": ex, "label": random.choice(labels)} for ex in examples] | |
return classified_results | |
# Classification results display | |
if st.button("Classify Examples", key="classify_button"): | |
results = classify_examples(st.session_state.examples_to_classify, st.session_state.labels) | |
st.write("Classification Results:") | |
for result in results: | |
st.write(f"Example: {result['example']}\nLabel: {result['label']}\n") | |
ุดุญุญ |