Wedyan2023's picture
Update app7.py
b585346 verified
raw
history blame
7.69 kB
import os
import streamlit as st
from openai import OpenAI
from dotenv import load_dotenv
from langchain_core.prompts import PromptTemplate
# Load environment variables
load_dotenv()
##openai_api_key = os.getenv("OPENAI_API_KEY")
# Initialize the client
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1",
api_key=os.environ.get('TOKEN2') # Add your Huggingface token here
)
# Initialize the OpenAI client
##client = OpenAI(
##base_url="https://api-inference.huggingface.co/v1",
##api_key=openai_api_key
##)
# Define reset function for the conversation
def reset_conversation():
st.session_state.conversation = []
st.session_state.messages = []
# Streamlit interface setup
st.title("🤖 Text Data Generation & Labeling App")
st.sidebar.title("Settings")
# Sidebar settings
selected_model = st.sidebar.selectbox("Select Model", ["meta-llama/Meta-Llama-3-8B-Instruct"])
temperature = st.sidebar.slider("Temperature", 0.0, 1.0, 0.5)
st.sidebar.button("Reset Conversation", on_click=reset_conversation)
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown("*Note: Generated content may be inaccurate or false.*")
# Initialize conversation state
if "messages" not in st.session_state:
st.session_state.messages = []
# Display conversation
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Main logic: choose between Data Generation and Data Labeling
task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"])
if task_choice == "Data Generation":
classification_type = st.selectbox(
"Choose Classification Type",
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
)
if classification_type == "Sentiment Analysis":
labels = ["Positive", "Negative", "Neutral"]
elif classification_type == "Binary Classification":
label_1 = st.text_input("Enter first class")
label_2 = st.text_input("Enter second class")
labels = [label_1, label_2]
else: # Multi-Class Classification
num_classes = st.slider("How many classes?", 3, 10, 3)
labels = [st.text_input(f"Class {i+1}") for i in range(num_classes)]
domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
if domain == "Custom":
domain = st.text_input("Specify custom domain")
min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10)
max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90)
use_few_shot = st.radio("Use few-shot examples?", ["Yes", "No"])
few_shot_examples = []
if use_few_shot == "Yes":
num_examples = st.slider("Number of few-shot examples", 1, 5, 1)
for i in range(num_examples):
content = st.text_area(f"Example {i+1} Content")
label = st.selectbox(f"Example {i+1} Label", labels)
few_shot_examples.append({"content": content, "label": label})
num_to_generate = st.number_input("Number of examples to generate", 1, 100, 10)
user_prompt = st.text_area("Enter additional instructions", "")
# Construct the LangChain prompt
prompt_template = PromptTemplate(
input_variables=["classification_type", "domain", "num_examples", "min_words", "max_words", "labels", "user_prompt"],
template=(
"You are a professional {classification_type} expert tasked with generating examples for {domain}.\n"
"Use the following parameters:\n"
"- Number of examples: {num_examples}\n"
"- Word range: {min_words}-{max_words}\n"
"- Labels: {labels}\n"
"{user_prompt}"
)
)
system_prompt = prompt_template.format(
classification_type=classification_type,
domain=domain,
num_examples=num_to_generate,
min_words=min_words,
max_words=max_words,
labels=", ".join(labels),
user_prompt=user_prompt
)
st.write("System Prompt:")
st.code(system_prompt)
if st.button("Generate Examples"):
with st.spinner("Generating..."):
st.session_state.messages.append({"role": "system", "content": system_prompt})
try:
stream = client.chat.completions.create(
model=selected_model,
messages=[{"role": "system", "content": system_prompt}],
temperature=temperature,
stream=True,
max_tokens=3000,
)
response = st.write_stream(stream)
st.session_state.messages.append({"role": "assistant", "content": response})
except Exception as e:
st.error("An error occurred during generation.")
st.error(f"Details: {e}")
elif task_choice == "Data Labeling":
# Labeling logic
labeling_type = st.selectbox(
"Classification Type for Labeling",
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
)
if labeling_type == "Sentiment Analysis":
labels = ["Positive", "Negative", "Neutral"]
elif labeling_type == "Binary Classification":
label_1 = st.text_input("First label for classification")
label_2 = st.text_input("Second label for classification")
labels = [label_1, label_2]
else: # Multi-Class Classification
num_classes = st.slider("Number of labels", 3, 10, 3)
labels = [st.text_input(f"Label {i+1}") for i in range(num_classes)]
use_few_shot_labeling = st.radio("Add few-shot examples for labeling?", ["Yes", "No"])
few_shot_labeling_examples = []
if use_few_shot_labeling == "Yes":
num_labeling_examples = st.slider("Number of few-shot labeling examples", 1, 5, 1)
for i in range(num_labeling_examples):
content = st.text_area(f"Labeling Example {i+1} Content")
label = st.selectbox(f"Label for Example {i+1}", labels)
few_shot_labeling_examples.append({"content": content, "label": label})
text_to_classify = st.text_area("Enter text to classify")
if st.button("Classify Text"):
if text_to_classify:
labeling_prompt = (
f"You are an expert in {labeling_type.lower()} classification. Classify this text using: {', '.join(labels)}.\n\n"
)
if few_shot_labeling_examples:
labeling_prompt += "Example classifications:\n"
for ex in few_shot_labeling_examples:
labeling_prompt += f"Text: {ex['content']} - Label: {ex['label']}\n"
labeling_prompt += f"\nClassify this: {text_to_classify}"
with st.spinner("Classifying..."):
st.session_state.messages.append({"role": "system", "content": labeling_prompt})
try:
stream = client.chat.completions.create(
model=selected_model,
messages=[{"role": "system", "content": labeling_prompt}],
temperature=temperature,
stream=True,
max_tokens=3000,
)
labeling_response = st.write_stream(stream)
st.write("Label:", labeling_response)
except Exception as e:
st.error("An error occurred during classification.")
st.error(f"Details: {e}")
else:
st.warning("Please enter text to classify.")