Spaces:
Sleeping
Sleeping
""" Simple Chatbot | |
@author: Nigel Gebodh | |
@email: [email protected] | |
""" | |
import numpy as np | |
import streamlit as st | |
from openai import OpenAI | |
import os | |
from dotenv import load_dotenv | |
load_dotenv() | |
# Initialize the client | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1", | |
api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') # Add your Huggingface token here | |
) | |
# Supported models | |
model_links = { | |
"Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct" | |
} | |
# Reset conversation | |
def reset_conversation(): | |
st.session_state.conversation = [] | |
st.session_state.messages = [] | |
return None | |
# Sidebar for model selection | |
selected_model = st.sidebar.selectbox("Select Model", list(model_links.keys())) | |
# Temperature slider | |
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5) | |
# Reset button | |
st.sidebar.button('Reset Chat', on_click=reset_conversation) | |
# Model description | |
st.sidebar.write(f"You're now chatting with **{selected_model}**") | |
st.sidebar.markdown("*Generated content may be inaccurate or false.*") | |
# Chat initialization | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Display chat messages | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Main logic to choose between data generation and data labeling | |
task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"]) | |
if task_choice == "Data Generation": | |
classification_type = st.selectbox( | |
"Choose Classification Type", | |
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"] | |
) | |
if classification_type == "Sentiment Analysis": | |
st.write("Sentiment Analysis: Positive, Negative, Neutral") | |
labels = ["Positive", "Negative", "Neutral"] | |
elif classification_type == "Binary Classification": | |
label_1 = st.text_input("Enter first class") | |
label_2 = st.text_input("Enter second class") | |
labels = [label_1, label_2] | |
elif classification_type == "Multi-Class Classification": | |
num_classes = st.slider("How many classes?", 3, 10, 3) | |
labels = [st.text_input(f"Class {i+1}") for i in range(num_classes)] | |
domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"]) | |
if domain == "Custom": | |
domain = st.text_input("Specify custom domain") | |
min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10) | |
max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90) | |
few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"]) | |
if few_shot == "Yes": | |
num_examples = st.slider("How many few-shot examples?", 1, 5, 1) | |
few_shot_examples = [ | |
{"content": st.text_area(f"Example {i+1}"), "label": st.selectbox(f"Label for example {i+1}", labels)} | |
for i in range(num_examples) | |
] | |
else: | |
few_shot_examples = [] | |
# Ask the user how many examples they need | |
num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=50, value=10) | |
# System prompt generation | |
system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n" | |
if few_shot_examples: | |
system_prompt += "Use the following few-shot examples as a reference:\n" | |
for example in few_shot_examples: | |
system_prompt += f"Example: {example['content']}, Label: {example['label']}\n" | |
system_prompt += f"Each example should have between {min_words} and {max_words} words.\n" | |
system_prompt += "Think step by step while generating the examples." | |
st.write("System Prompt:") | |
st.code(system_prompt) | |
if st.button("Generate Examples"): | |
# Break generation into smaller chunks if needed to ensure enough examples | |
all_generated_examples = [] | |
remaining_examples = num_to_generate | |
with st.spinner("Generating..."): | |
while remaining_examples > 0: | |
# Generating examples in chunks to avoid token limits | |
chunk_size = min(remaining_examples, 5) | |
try: | |
# Append the new chunk system prompt | |
st.session_state.messages.append({"role": "system", "content": system_prompt}) | |
stream = client.chat.completions.create( | |
model=model_links[selected_model], | |
messages=[ | |
{"role": m["role"], "content": m["content"]} | |
for m in st.session_state.messages | |
], | |
temperature=temp_values, | |
stream=True, | |
max_tokens=3000, | |
) | |
# Parse the response and break it into individual examples | |
response = st.write_stream(stream) | |
generated_examples = response.split("\n")[:chunk_size] # Assuming each example is on a new line | |
# Store the new examples | |
all_generated_examples.extend(generated_examples) | |
remaining_examples -= chunk_size | |
except Exception as e: | |
st.error("Error during generation.") | |
st.write(e) | |
break | |
# Display all generated examples | |
for idx, example in enumerate(all_generated_examples): | |
st.write(f"Example {idx+1}: {example}") | |
# Update session state to prevent repetition of old prompts | |
st.session_state.messages = [] # Clear messages after each generation | |
else: | |
# Data labeling workflow (for future implementation based on classification) | |
st.write("Data Labeling functionality will go here.") | |