Spaces:
Sleeping
Sleeping
File size: 5,927 Bytes
e8f079f 002b092 9f54a3b c2231bb 9f54a3b c2231bb 9f54a3b c2231bb 9f54a3b c2231bb 9f57726 c2231bb 9f57726 142827c 9f54a3b 9f57726 dc808bb b7f505b 9f57726 b7f505b 9f57726 b7f505b 9f57726 b7f505b 9f57726 b7f505b 9f57726 b7f505b 9f57726 b7f505b 9f57726 b7f505b 9f57726 b7f505b 9f57726 dc808bb 9f57726 dc808bb b7f505b 9f57726 9f54a3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
""" Simple Chatbot
@author: Nigel Gebodh
@email: [email protected]
"""
import numpy as np
import streamlit as st
from openai import OpenAI
import os
from dotenv import load_dotenv
load_dotenv()
# Initialize the client
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1",
api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') # Add your Huggingface token here
)
# Supported models
model_links = {
"Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct"
}
# Reset conversation
def reset_conversation():
st.session_state.conversation = []
st.session_state.messages = []
return None
# Sidebar for model selection
selected_model = st.sidebar.selectbox("Select Model", list(model_links.keys()))
# Temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)
# Reset button
st.sidebar.button('Reset Chat', on_click=reset_conversation)
# Model description
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
# Chat initialization
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Main logic to choose between data generation and data labeling
task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"])
if task_choice == "Data Generation":
classification_type = st.selectbox(
"Choose Classification Type",
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
)
if classification_type == "Sentiment Analysis":
st.write("Sentiment Analysis: Positive, Negative, Neutral")
labels = ["Positive", "Negative", "Neutral"]
elif classification_type == "Binary Classification":
label_1 = st.text_input("Enter first class")
label_2 = st.text_input("Enter second class")
labels = [label_1, label_2]
elif classification_type == "Multi-Class Classification":
num_classes = st.slider("How many classes?", 3, 10, 3)
labels = [st.text_input(f"Class {i+1}") for i in range(num_classes)]
domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
if domain == "Custom":
domain = st.text_input("Specify custom domain")
min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10)
max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90)
few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"])
if few_shot == "Yes":
num_examples = st.slider("How many few-shot examples?", 1, 5, 1)
few_shot_examples = [
{"content": st.text_area(f"Example {i+1}"), "label": st.selectbox(f"Label for example {i+1}", labels)}
for i in range(num_examples)
]
else:
few_shot_examples = []
# Ask the user how many examples they need
num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=50, value=10)
# System prompt generation
system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n"
if few_shot_examples:
system_prompt += "Use the following few-shot examples as a reference:\n"
for example in few_shot_examples:
system_prompt += f"Example: {example['content']}, Label: {example['label']}\n"
system_prompt += f"Each example should have between {min_words} and {max_words} words.\n"
system_prompt += "Think step by step while generating the examples."
st.write("System Prompt:")
st.code(system_prompt)
if st.button("Generate Examples"):
# Break generation into smaller chunks if needed to ensure enough examples
all_generated_examples = []
remaining_examples = num_to_generate
with st.spinner("Generating..."):
while remaining_examples > 0:
# Generating examples in chunks to avoid token limits
chunk_size = min(remaining_examples, 5)
try:
# Append the new chunk system prompt
st.session_state.messages.append({"role": "system", "content": system_prompt})
stream = client.chat.completions.create(
model=model_links[selected_model],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
temperature=temp_values,
stream=True,
max_tokens=3000,
)
# Parse the response and break it into individual examples
response = st.write_stream(stream)
generated_examples = response.split("\n")[:chunk_size] # Assuming each example is on a new line
# Store the new examples
all_generated_examples.extend(generated_examples)
remaining_examples -= chunk_size
except Exception as e:
st.error("Error during generation.")
st.write(e)
break
# Display all generated examples
for idx, example in enumerate(all_generated_examples):
st.write(f"Example {idx+1}: {example}")
# Update session state to prevent repetition of old prompts
st.session_state.messages = [] # Clear messages after each generation
else:
# Data labeling workflow (for future implementation based on classification)
st.write("Data Labeling functionality will go here.")
|