Delete app104.py
Browse files
app104.py
DELETED
@@ -1,1574 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import os
|
4 |
-
import json
|
5 |
-
import base64
|
6 |
-
import random
|
7 |
-
from streamlit_pdf_viewer import pdf_viewer
|
8 |
-
from langchain.prompts import PromptTemplate
|
9 |
-
from datetime import datetime
|
10 |
-
from pathlib import Path
|
11 |
-
from openai import OpenAI
|
12 |
-
from dotenv import load_dotenv
|
13 |
-
import warnings
|
14 |
-
|
15 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
16 |
-
import torch
|
17 |
-
|
18 |
-
warnings.filterwarnings('ignore')
|
19 |
-
|
20 |
-
os.getenv("OAUTH_CLIENT_ID")
|
21 |
-
|
22 |
-
|
23 |
-
# Load environment variables and initialize the OpenAI client to use Hugging Face Inference API.
|
24 |
-
load_dotenv()
|
25 |
-
client = OpenAI(
|
26 |
-
base_url="https://api-inference.huggingface.co/v1",
|
27 |
-
api_key=os.environ.get('TOKEN2') # Hugging Face API token
|
28 |
-
)
|
29 |
-
##########################################################3
|
30 |
-
# import streamlit as st
|
31 |
-
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
32 |
-
# import torch
|
33 |
-
|
34 |
-
# # Model selection dropdown
|
35 |
-
# selected_model = st.selectbox(
|
36 |
-
# "Select Model",
|
37 |
-
# ["meta-llama/Meta-Llama-3-8B-Instruct-Turbo",
|
38 |
-
# "meta-llama/Llama-3.3-70B-Instruct",
|
39 |
-
# "meta-llama/Llama-3.2-3B-Instruct",
|
40 |
-
# "meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
41 |
-
# "meta-llama/Meta-Llama-3-8B-Instruct",
|
42 |
-
# "meta-llama/Llama-3.1-70B-Instruct"],
|
43 |
-
# key='model_select'
|
44 |
-
# )
|
45 |
-
|
46 |
-
# @st.cache_resource # Cache the model to prevent reloading
|
47 |
-
# def load_model(model_name):
|
48 |
-
# try:
|
49 |
-
# # Optimized model loading configuration
|
50 |
-
# model = AutoModelForCausalLM.from_pretrained(
|
51 |
-
# model_name,
|
52 |
-
# torch_dtype=torch.float16, # Use half precision
|
53 |
-
# device_map="auto", # Automatic device mapping
|
54 |
-
# load_in_8bit=True, # Enable 8-bit quantization
|
55 |
-
# low_cpu_mem_usage=True, # Optimize CPU memory usage
|
56 |
-
# max_memory={0: "10GB"} # Limit GPU memory usage
|
57 |
-
# )
|
58 |
-
|
59 |
-
# tokenizer = AutoTokenizer.from_pretrained(
|
60 |
-
# model_name,
|
61 |
-
# padding_side="left",
|
62 |
-
# truncation_side="left"
|
63 |
-
# )
|
64 |
-
|
65 |
-
# return model, tokenizer
|
66 |
-
|
67 |
-
# except Exception as e:
|
68 |
-
# st.error(f"Error loading model: {str(e)}")
|
69 |
-
# return None, None
|
70 |
-
|
71 |
-
# # Load the selected model with optimizations
|
72 |
-
# if selected_model:
|
73 |
-
# model, tokenizer = load_model(selected_model)
|
74 |
-
|
75 |
-
# # Check if model loaded successfully
|
76 |
-
# if model is not None:
|
77 |
-
# st.success(f"Successfully loaded {selected_model}")
|
78 |
-
# else:
|
79 |
-
# st.warning("Please select a different model or check your hardware capabilities")
|
80 |
-
|
81 |
-
# # Function to generate text
|
82 |
-
# def generate_response(prompt, model, tokenizer):
|
83 |
-
# try:
|
84 |
-
# inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
85 |
-
|
86 |
-
# with torch.no_grad():
|
87 |
-
# outputs = model.generate(
|
88 |
-
# inputs["input_ids"],
|
89 |
-
# max_length=256,
|
90 |
-
# num_return_sequences=1,
|
91 |
-
# temperature=0.7,
|
92 |
-
# do_sample=True,
|
93 |
-
# pad_token_id=tokenizer.pad_token_id
|
94 |
-
# )
|
95 |
-
|
96 |
-
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
97 |
-
# return response
|
98 |
-
|
99 |
-
# except Exception as e:
|
100 |
-
# return f"Error generating response: {str(e)}"
|
101 |
-
############################################################
|
102 |
-
|
103 |
-
####new
|
104 |
-
# from openai import OpenAI
|
105 |
-
|
106 |
-
# client = OpenAI(
|
107 |
-
# base_url="https://router.huggingface.co/together/v1",
|
108 |
-
# api_key=os.environ.get('TOKEN2'),
|
109 |
-
# )
|
110 |
-
|
111 |
-
# completion = client.chat.completions.create(
|
112 |
-
# model="meta-llama/Meta-Llama-3-8B-Instruct-Turbo",
|
113 |
-
# messages=[
|
114 |
-
# {
|
115 |
-
# "role": "user",
|
116 |
-
# "content": "What is the capital of France?"
|
117 |
-
# }
|
118 |
-
# ],
|
119 |
-
# max_tokens=512,
|
120 |
-
# )
|
121 |
-
|
122 |
-
# print(completion.choices[0].message)
|
123 |
-
#####
|
124 |
-
|
125 |
-
# Create necessary directories
|
126 |
-
for dir_name in ['data', 'feedback']:
|
127 |
-
if not os.path.exists(dir_name):
|
128 |
-
os.makedirs(dir_name)
|
129 |
-
|
130 |
-
# Custom CSS
|
131 |
-
st.markdown("""
|
132 |
-
<style>
|
133 |
-
.stButton > button {
|
134 |
-
width: 100%;
|
135 |
-
margin-bottom: 10px;
|
136 |
-
background-color: #4CAF50;
|
137 |
-
color: white;
|
138 |
-
border: none;
|
139 |
-
padding: 10px;
|
140 |
-
border-radius: 5px;
|
141 |
-
}
|
142 |
-
.task-button {
|
143 |
-
background-color: #2196F3 !important;
|
144 |
-
}
|
145 |
-
.stSelectbox {
|
146 |
-
margin-bottom: 20px;
|
147 |
-
}
|
148 |
-
.output-container {
|
149 |
-
padding: 20px;
|
150 |
-
border-radius: 5px;
|
151 |
-
border: 1px solid #ddd;
|
152 |
-
margin: 10px 0;
|
153 |
-
}
|
154 |
-
.status-container {
|
155 |
-
padding: 10px;
|
156 |
-
border-radius: 5px;
|
157 |
-
margin: 10px 0;
|
158 |
-
}
|
159 |
-
.sidebar-info {
|
160 |
-
padding: 10px;
|
161 |
-
background-color: #f0f2f6;
|
162 |
-
border-radius: 5px;
|
163 |
-
margin: 10px 0;
|
164 |
-
}
|
165 |
-
.feedback-button {
|
166 |
-
background-color: #ff9800 !important;
|
167 |
-
}
|
168 |
-
.feedback-container {
|
169 |
-
padding: 15px;
|
170 |
-
background-color: #f5f5f5;
|
171 |
-
border-radius: 5px;
|
172 |
-
margin: 15px 0;
|
173 |
-
}
|
174 |
-
</style>
|
175 |
-
""", unsafe_allow_html=True)
|
176 |
-
|
177 |
-
# Helper functions
|
178 |
-
def read_csv_with_encoding(file):
|
179 |
-
encodings = ['utf-8', 'latin1', 'iso-8859-1', 'cp1252']
|
180 |
-
for encoding in encodings:
|
181 |
-
try:
|
182 |
-
return pd.read_csv(file, encoding=encoding)
|
183 |
-
except UnicodeDecodeError:
|
184 |
-
continue
|
185 |
-
raise UnicodeDecodeError("Failed to read file with any supported encoding")
|
186 |
-
|
187 |
-
#def save_feedback(feedback_data):
|
188 |
-
#feedback_file = 'feedback/user_feedback.csv'
|
189 |
-
#feedback_df = pd.DataFrame([feedback_data])
|
190 |
-
|
191 |
-
#if os.path.exists(feedback_file):
|
192 |
-
#feedback_df.to_csv(feedback_file, mode='a', header=False, index=False)
|
193 |
-
#else:
|
194 |
-
#feedback_df.to_csv(feedback_file, index=False)
|
195 |
-
|
196 |
-
def reset_conversation():
|
197 |
-
st.session_state.conversation = []
|
198 |
-
st.session_state.messages = []
|
199 |
-
if 'task_choice' in st.session_state:
|
200 |
-
del st.session_state.task_choice
|
201 |
-
return None
|
202 |
-
#new 24 March
|
203 |
-
#user_input = st.text_input("Enter your prompt:")
|
204 |
-
###########33
|
205 |
-
|
206 |
-
# Initialize session state variables
|
207 |
-
if "messages" not in st.session_state:
|
208 |
-
st.session_state.messages = []
|
209 |
-
if "examples_to_classify" not in st.session_state:
|
210 |
-
st.session_state.examples_to_classify = []
|
211 |
-
if "system_role" not in st.session_state:
|
212 |
-
st.session_state.system_role = ""
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
# Main app title
|
217 |
-
st.title("🤖🦙 Text Data Labeling and Generation App")
|
218 |
-
# def embed_pdf_sidebar(pdf_path):
|
219 |
-
# with open(pdf_path, "rb") as f:
|
220 |
-
# base64_pdf = base64.b64encode(f.read()).decode('utf-8')
|
221 |
-
# pdf_display = f"""
|
222 |
-
# <iframe src="data:application/pdf;base64,{base64_pdf}"
|
223 |
-
# width="100%" height="400" type="application/pdf"></iframe>
|
224 |
-
# """
|
225 |
-
# st.markdown(pdf_display, unsafe_allow_html=True)
|
226 |
-
#
|
227 |
-
|
228 |
-
|
229 |
-
# Sidebar settings
|
230 |
-
with st.sidebar:
|
231 |
-
st.title("⚙️ Settings")
|
232 |
-
|
233 |
-
|
234 |
-
#this last code works
|
235 |
-
with st.sidebar:
|
236 |
-
st.markdown("### 📘Data Generation and Labeling Instructions")
|
237 |
-
#st.markdown("<h4 style='color: #4A90E2;'>📘 Instructions</h4>", unsafe_allow_html=True)
|
238 |
-
with open("User instructions.pdf", "rb") as f:
|
239 |
-
st.download_button(
|
240 |
-
label="📄 Download Instructions PDF",
|
241 |
-
data=f,
|
242 |
-
#file_name="instructions.pdf",
|
243 |
-
file_name="User instructions.pdf",
|
244 |
-
mime="application/pdf"
|
245 |
-
)
|
246 |
-
|
247 |
-
selected_model = st.selectbox(
|
248 |
-
"Select Model",
|
249 |
-
["meta-llama/Llama-3.2-11B-Vision-Instruct","meta-llama/Meta-Llama-3-8B-Instruct-Turbo", "meta-llama/Llama-3.3-70B-Instruct", "meta-llama/Llama-3.2-3B-Instruct","meta-llama/Llama-4-Scout-17B-16E-Instruct", "meta-llama/Meta-Llama-3-8B-Instruct",
|
250 |
-
"meta-llama/Llama-3.1-70B-Instruct"],
|
251 |
-
key='model_select'
|
252 |
-
)
|
253 |
-
|
254 |
-
#################new oooo
|
255 |
-
|
256 |
-
# # Model selection dropdown
|
257 |
-
# selected_model = st.selectbox(
|
258 |
-
# "Select Model",
|
259 |
-
# [#"meta-llama/Meta-Llama-3-8B-Instruct-Turbo",
|
260 |
-
# "meta-llama/Llama-3.2-3B-Instruct",
|
261 |
-
# "meta-llama/Llama-3.3-70B-Instruct",
|
262 |
-
# "meta-llama/Llama-3.2-3B-Instruct",
|
263 |
-
# "meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
264 |
-
# "meta-llama/Meta-Llama-3-8B-Instruct",
|
265 |
-
# "meta-llama/Llama-3.1-70B-Instruct"],
|
266 |
-
# key='model_select'
|
267 |
-
# )
|
268 |
-
|
269 |
-
# @st.cache_resource # Cache the model to prevent reloading
|
270 |
-
# def load_model(model_name):
|
271 |
-
# try:
|
272 |
-
# # Optimized model loading configuration
|
273 |
-
# model = AutoModelForCausalLM.from_pretrained(
|
274 |
-
# model_name,
|
275 |
-
# torch_dtype=torch.float16, # Use half precision
|
276 |
-
# device_map="auto", # Automatic device mapping
|
277 |
-
# load_in_8bit=True, # Enable 8-bit quantization
|
278 |
-
# low_cpu_mem_usage=True, # Optimize CPU memory usage
|
279 |
-
# max_memory={0: "10GB"} # Limit GPU memory usage
|
280 |
-
# )
|
281 |
-
|
282 |
-
# tokenizer = AutoTokenizer.from_pretrained(
|
283 |
-
# model_name,
|
284 |
-
# padding_side="left",
|
285 |
-
# truncation_side="left"
|
286 |
-
# )
|
287 |
-
|
288 |
-
# return model, tokenizer
|
289 |
-
|
290 |
-
# except Exception as e:
|
291 |
-
# st.error(f"Error loading model: {str(e)}")
|
292 |
-
# return None, None
|
293 |
-
|
294 |
-
# # Load the selected model with optimizations
|
295 |
-
# if selected_model:
|
296 |
-
# model, tokenizer = load_model(selected_model)
|
297 |
-
|
298 |
-
# # Check if model loaded successfully
|
299 |
-
# if model is not None:
|
300 |
-
# st.success(f"Successfully loaded {selected_model}")
|
301 |
-
# else:
|
302 |
-
# st.warning("Please select a different model or check your hardware capabilities")
|
303 |
-
|
304 |
-
# # Function to generate text
|
305 |
-
# def generate_response(prompt, model, tokenizer):
|
306 |
-
# try:
|
307 |
-
# inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
|
308 |
-
|
309 |
-
# with torch.no_grad():
|
310 |
-
# outputs = model.generate(
|
311 |
-
# inputs["input_ids"],
|
312 |
-
# max_length=256,
|
313 |
-
# num_return_sequences=1,
|
314 |
-
# temperature=0.7,
|
315 |
-
# do_sample=True,
|
316 |
-
# pad_token_id=tokenizer.pad_token_id
|
317 |
-
# )
|
318 |
-
|
319 |
-
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
320 |
-
# return response
|
321 |
-
|
322 |
-
# except Exception as e:
|
323 |
-
# return f"Error generating response: {str(e)}"
|
324 |
-
# ################
|
325 |
-
|
326 |
-
# model = AutoModelForCausalLM.from_pretrained(
|
327 |
-
# "meta-llama/Meta-Llama-3-8B-Instruct",
|
328 |
-
# torch_dtype=torch.float16, # Use half precision
|
329 |
-
# device_map="auto", # Automatic device mapping
|
330 |
-
# load_in_8bit=True # Load in 8-bit precision
|
331 |
-
# )
|
332 |
-
temperature = st.slider(
|
333 |
-
"Temperature",
|
334 |
-
0.0, 1.0, 0.7,
|
335 |
-
help="Controls randomness in generation"
|
336 |
-
)
|
337 |
-
|
338 |
-
st.button("🔄 New Conversation", on_click=reset_conversation)
|
339 |
-
with st.container():
|
340 |
-
st.markdown(f"""
|
341 |
-
<div class="sidebar-info">
|
342 |
-
<h4>Current Model: {selected_model}</h4>
|
343 |
-
<p><em>Note: Generated content may be inaccurate or false. Check important info.</em></p>
|
344 |
-
</div>
|
345 |
-
""", unsafe_allow_html=True)
|
346 |
-
|
347 |
-
feedback_url = "https://docs.google.com/forms/d/e/1FAIpQLSdZ_5mwW-pjqXHgxR0xriyVeRhqdQKgb5c-foXlYAV55Rilsg/viewform?usp=header"
|
348 |
-
st.sidebar.markdown(
|
349 |
-
f'<a href="{feedback_url}" target="_blank"><button style="width: 100%;">Feedback Form</button></a>',
|
350 |
-
unsafe_allow_html=True
|
351 |
-
)
|
352 |
-
|
353 |
-
# Display conversation
|
354 |
-
for message in st.session_state.messages:
|
355 |
-
with st.chat_message(message["role"]):
|
356 |
-
st.markdown(message["content"])
|
357 |
-
|
358 |
-
# Main content
|
359 |
-
if 'task_choice' not in st.session_state:
|
360 |
-
col1, col2 = st.columns(2)
|
361 |
-
with col1:
|
362 |
-
if st.button("📝 Data Generation", key="gen_button", help="Generate new data"):
|
363 |
-
st.session_state.task_choice = "Data Generation"
|
364 |
-
with col2:
|
365 |
-
if st.button("🏷️ Data Labeling", key="label_button", help="Label existing data"):
|
366 |
-
st.session_state.task_choice = "Data Labeling"
|
367 |
-
|
368 |
-
if "task_choice" in st.session_state:
|
369 |
-
if st.session_state.task_choice == "Data Generation":
|
370 |
-
st.header("📝 Data Generation")
|
371 |
-
|
372 |
-
# 1. Domain selection
|
373 |
-
domain_selection = st.selectbox("Domain", [
|
374 |
-
"Restaurant reviews", "E-Commerce reviews", "News", "AG News", "Tourism", "Custom"
|
375 |
-
])
|
376 |
-
|
377 |
-
# 2. Handle custom domain input
|
378 |
-
custom_domain_valid = True # Assume valid until proven otherwise
|
379 |
-
|
380 |
-
if domain_selection == "Custom":
|
381 |
-
domain = st.text_input("Specify custom domain")
|
382 |
-
if not domain.strip():
|
383 |
-
st.error("Please specify a domain name.")
|
384 |
-
custom_domain_valid = False
|
385 |
-
else:
|
386 |
-
domain = domain_selection
|
387 |
-
|
388 |
-
# Classification type selection
|
389 |
-
classification_type = st.selectbox(
|
390 |
-
"Classification Type",
|
391 |
-
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
|
392 |
-
)
|
393 |
-
# Labels setup based on classification type
|
394 |
-
#labels = []
|
395 |
-
labels = []
|
396 |
-
labels_valid = False
|
397 |
-
errors = []
|
398 |
-
|
399 |
-
def validate_binary_labels(labels):
|
400 |
-
errors = []
|
401 |
-
normalized = [label.strip().lower() for label in labels]
|
402 |
-
|
403 |
-
if not labels[0].strip():
|
404 |
-
errors.append("First class name is required.")
|
405 |
-
if not labels[1].strip():
|
406 |
-
errors.append("Second class name is required.")
|
407 |
-
if normalized[0] == normalized[1] and all(normalized):
|
408 |
-
errors.append("Class names must be different.")
|
409 |
-
return errors
|
410 |
-
|
411 |
-
if classification_type == "Sentiment Analysis":
|
412 |
-
st.write("### Sentiment Analysis Labels (Fixed)")
|
413 |
-
col1, col2, col3 = st.columns(3)
|
414 |
-
with col1:
|
415 |
-
st.text_input("First class", "Positive", disabled=True)
|
416 |
-
with col2:
|
417 |
-
st.text_input("Second class", "Negative", disabled=True)
|
418 |
-
with col3:
|
419 |
-
st.text_input("Third class", "Neutral", disabled=True)
|
420 |
-
labels = ["Positive", "Negative", "Neutral"]
|
421 |
-
|
422 |
-
elif classification_type == "Binary Classification":
|
423 |
-
st.write("### Binary Classification Labels")
|
424 |
-
col1, col2 = st.columns(2)
|
425 |
-
with col1:
|
426 |
-
label_1 = st.text_input("First class", "Positive")
|
427 |
-
with col2:
|
428 |
-
label_2 = st.text_input("Second class", "Negative")
|
429 |
-
|
430 |
-
labels = [label_1, label_2]
|
431 |
-
errors = validate_binary_labels(labels)
|
432 |
-
|
433 |
-
if errors:
|
434 |
-
st.error("\n".join(errors))
|
435 |
-
else:
|
436 |
-
st.success("Binary class names are valid and unique!")
|
437 |
-
|
438 |
-
|
439 |
-
elif classification_type == "Multi-Class Classification":
|
440 |
-
st.write("### Multi-Class Classification Labels")
|
441 |
-
|
442 |
-
default_labels_by_domain = {
|
443 |
-
"News": ["Political", "Sports", "Entertainment", "Technology", "Business"],
|
444 |
-
"AG News": ["World", "Sports", "Business", "Sci/Tech"],
|
445 |
-
"Tourism": ["Accommodation", "Transportation", "Tourist Attractions",
|
446 |
-
"Food & Dining", "Local Experience", "Adventure Activities",
|
447 |
-
"Wellness & Spa", "Eco-Friendly Practices", "Family-Friendly",
|
448 |
-
"Luxury Tourism"],
|
449 |
-
"Restaurant reviews": ["Italian", "French", "American"],
|
450 |
-
"E-Commerce reviews": ["Mobile Phones & Accessories", "Laptops & Computers","Kitchen & Dining",
|
451 |
-
"Beauty & Personal Care", "Home & Furniture", "Clothing & Fashion",
|
452 |
-
"Shoes & Handbags", "Health & Wellness", "Electronics & Gadgets",
|
453 |
-
"Books & Stationery","Toys & Games", "Sports & Fitness",
|
454 |
-
"Grocery & Gourmet Food","Watches & Accessories", "Baby Products"]
|
455 |
-
}
|
456 |
-
|
457 |
-
num_classes = st.slider("Number of classes", 3, 15, 3)
|
458 |
-
|
459 |
-
# Get defaults for selected domain, or empty list
|
460 |
-
defaults = default_labels_by_domain.get(domain, [])
|
461 |
-
|
462 |
-
labels = []
|
463 |
-
errors = []
|
464 |
-
cols = st.columns(3)
|
465 |
-
|
466 |
-
for i in range(num_classes):
|
467 |
-
with cols[i % 3]:
|
468 |
-
default_value = defaults[i] if i < len(defaults) else ""
|
469 |
-
label_input = st.text_input(f"Class {i+1}", default_value)
|
470 |
-
normalized_label = label_input.strip().title()
|
471 |
-
|
472 |
-
if not normalized_label:
|
473 |
-
errors.append(f"Class {i+1} name is required.")
|
474 |
-
else:
|
475 |
-
labels.append(normalized_label)
|
476 |
-
|
477 |
-
# Check for duplicates (case-insensitive)
|
478 |
-
if len(labels) != len(set(labels)):
|
479 |
-
errors.append("Labels names must be unique (case-insensitive, normalized to Title Case).")
|
480 |
-
|
481 |
-
# Show validation results
|
482 |
-
if errors:
|
483 |
-
for error in errors:
|
484 |
-
st.error(error)
|
485 |
-
else:
|
486 |
-
st.success("All Labels names are valid and unique!")
|
487 |
-
labels_valid = not errors # Will be True only if there are no label errors
|
488 |
-
|
489 |
-
##############
|
490 |
-
#new 22/4/2025
|
491 |
-
# add additional attributes
|
492 |
-
add_attributes = st.checkbox("Add additional attributes (optional)")
|
493 |
-
additional_attributes = []
|
494 |
-
|
495 |
-
if add_attributes:
|
496 |
-
num_attributes = st.slider("Number of attributes to add", 1, 5, 1)
|
497 |
-
for i in range(num_attributes):
|
498 |
-
st.markdown(f"#### Attribute {i+1}")
|
499 |
-
attr_name = st.text_input(f"Name of attribute {i+1}", key=f"attr_name_{i}")
|
500 |
-
attr_topics = st.text_input(f"Topics (comma-separated) for {attr_name}", key=f"attr_topics_{i}")
|
501 |
-
if attr_name and attr_topics:
|
502 |
-
topics_list = [topic.strip() for topic in attr_topics.split(",") if topic.strip()]
|
503 |
-
additional_attributes.append({"attribute": attr_name, "topics": topics_list})
|
504 |
-
|
505 |
-
################
|
506 |
-
|
507 |
-
# Generation parameters
|
508 |
-
col1, col2 = st.columns(2)
|
509 |
-
with col1:
|
510 |
-
min_words = st.number_input("Min words", 1, 100, 20)
|
511 |
-
with col2:
|
512 |
-
max_words = st.number_input("Max words", min_words, 100, 50)
|
513 |
-
|
514 |
-
# Few-shot examples
|
515 |
-
use_few_shot = st.toggle("Use few-shot examples")
|
516 |
-
few_shot_examples = []
|
517 |
-
if use_few_shot:
|
518 |
-
num_examples = st.slider("Number of few-shot examples", 1, 10, 1)
|
519 |
-
for i in range(num_examples):
|
520 |
-
with st.expander(f"Example {i+1}"):
|
521 |
-
content = st.text_area(f"Content", key=f"few_shot_content_{i}")
|
522 |
-
label = st.selectbox(f"Label", labels, key=f"few_shot_label_{i}")
|
523 |
-
if content and label:
|
524 |
-
few_shot_examples.append({"content": content, "label": label})
|
525 |
-
|
526 |
-
num_to_generate = st.number_input("Number of examples", 1, 100, 10)
|
527 |
-
#sytem role after
|
528 |
-
# System role customization
|
529 |
-
#default_system_role = f"You are a professional {classification_type} expert, your role is to generate text examples for {domain} domain. Always generate unique diverse examples and do not repeat the generated data. The generated text should be between {min_words} to {max_words} words long."
|
530 |
-
# System role customization
|
531 |
-
default_system_role = (
|
532 |
-
f"You are a seasoned expert in {classification_type}, specializing in the {domain} domain. "
|
533 |
-
f" Your primary responsibility is to generate high-quality, diverse, and unique text examples "
|
534 |
-
f"tailored to this domain. Please ensure that each example adheres to the specified length "
|
535 |
-
f"requirements, ranging from {min_words} to {max_words} words, and avoid any repetition in the generated content."
|
536 |
-
)
|
537 |
-
system_role = st.text_area("Modify System Role (optional)",
|
538 |
-
value=default_system_role,
|
539 |
-
key="system_role_input")
|
540 |
-
st.session_state['system_role'] = system_role if system_role else default_system_role
|
541 |
-
# Labels initialization
|
542 |
-
#labels = []
|
543 |
-
|
544 |
-
|
545 |
-
user_prompt = st.text_area("User Prompt (optional)")
|
546 |
-
|
547 |
-
# Updated prompt template including system role
|
548 |
-
prompt_template = PromptTemplate(
|
549 |
-
input_variables=["system_role", "classification_type", "domain", "num_examples",
|
550 |
-
"min_words", "max_words", "labels", "user_prompt", "few_shot_examples", "additional_attributes"],
|
551 |
-
template=(
|
552 |
-
"{system_role}\n"
|
553 |
-
"- Use the following parameters:\n"
|
554 |
-
"- Generate {num_examples} examples\n"
|
555 |
-
"- Each example should be between {min_words} to {max_words} words long\n"
|
556 |
-
"- Use these labels: {labels}.\n"
|
557 |
-
"- Use the following additional attributes:\n"
|
558 |
-
"- {additional_attributes}\n"
|
559 |
-
"- Generate the examples in this format: 'Example text. Label: label'\n"
|
560 |
-
"- Do not include word counts or any additional information\n"
|
561 |
-
"- Always use your creativity and intelligence to generate unique and diverse text data\n"
|
562 |
-
"- In sentiment analysis, ensure that the sentiment classification is clearly identified as Positive, Negative, or Neutral. Do not leave the sentiment ambiguous.\n"
|
563 |
-
"- In binary sentiment analysis, classify text strictly as either Positive or Negative. Do not include or imply Neutral as an option.\n"
|
564 |
-
"- Write unique examples every time.\n"
|
565 |
-
"- DO NOT REPEAT your gnerated text. \n"
|
566 |
-
"- For each Output, describe it once and move to the next.\n"
|
567 |
-
"- List each Output only once, and avoid repeating details.\n"
|
568 |
-
"- Additional instructions: {user_prompt}\n\n"
|
569 |
-
"- Use the following examples as a reference in the generation process\n\n {few_shot_examples}. \n"
|
570 |
-
"- Think step by step, generate numbered examples, and check each newly generated example to ensure it has not been generated before. If it has, modify it"
|
571 |
-
|
572 |
-
)
|
573 |
-
)
|
574 |
-
# template=(
|
575 |
-
# "{system_role}\n"
|
576 |
-
# "- Use the following parameters:\n"
|
577 |
-
# "- Generate {num_examples} examples\n"
|
578 |
-
# "- Each example should be between {min_words} to {max_words} words long\n"
|
579 |
-
# "- Use these labels: {labels}.\n"
|
580 |
-
# "- Use the following additional attributes:\n"
|
581 |
-
# "{additional_attributes}\n"
|
582 |
-
# #"- Format each example like this: 'Example text. Label: [label]. Attribute1: [topic1]. Attribute2: [topic2]'\n"
|
583 |
-
# "- Generate the examples in this format: 'Example text. Label: label'\n"
|
584 |
-
# "- Additional instructions: {user_prompt}\n"
|
585 |
-
# "- Use these few-shot examples if provided:\n{few_shot_examples}\n"
|
586 |
-
# "- Think step by step and ensure examples are unique and not repeated."
|
587 |
-
# )
|
588 |
-
# )
|
589 |
-
##########new 22/4/2025
|
590 |
-
formatted_attributes = "\n".join([
|
591 |
-
f"- {attr['attribute']}: {', '.join(attr['topics'])}" for attr in additional_attributes
|
592 |
-
])
|
593 |
-
#######################
|
594 |
-
|
595 |
-
# Generate system prompt
|
596 |
-
system_prompt = prompt_template.format(
|
597 |
-
system_role=st.session_state['system_role'],
|
598 |
-
classification_type=classification_type,
|
599 |
-
domain=domain,
|
600 |
-
num_examples=num_to_generate,
|
601 |
-
min_words=min_words,
|
602 |
-
max_words=max_words,
|
603 |
-
labels=", ".join(labels),
|
604 |
-
user_prompt=user_prompt,
|
605 |
-
few_shot_examples="\n".join([f"{ex['content']}\nLabel: {ex['label']}" for ex in few_shot_examples]) if few_shot_examples else "",
|
606 |
-
additional_attributes=formatted_attributes
|
607 |
-
)
|
608 |
-
|
609 |
-
|
610 |
-
# Store system prompt in session state
|
611 |
-
st.session_state['system_prompt'] = system_prompt
|
612 |
-
|
613 |
-
# Display system prompt
|
614 |
-
st.write("System Prompt:")
|
615 |
-
st.text_area("Current System Prompt", value=st.session_state['system_prompt'],
|
616 |
-
height=400, disabled=True)
|
617 |
-
|
618 |
-
|
619 |
-
if st.button("🎯 Generate Examples"):
|
620 |
-
#
|
621 |
-
errors = []
|
622 |
-
if domain_selection == "Custom" and not domain.strip():
|
623 |
-
st.warning("Custom domain name is required.")
|
624 |
-
elif len(labels) != len(set(labels)):
|
625 |
-
st.warning("Class names must be unique.")
|
626 |
-
elif any(not lbl.strip() for lbl in labels):
|
627 |
-
st.warning("All class labels must be filled in.")
|
628 |
-
#else:
|
629 |
-
#st.success("Generating examples for domain: {domain}")
|
630 |
-
|
631 |
-
#if not custom_domain_valid:
|
632 |
-
#st.warning("Custom domain name is required.")
|
633 |
-
#elif not labels_valid:
|
634 |
-
#st.warning("Please fix the label errors before generating examples.")
|
635 |
-
#else:
|
636 |
-
# Proceed to generate examples
|
637 |
-
#st.success(f"Generating examples for domain: {domain}")
|
638 |
-
|
639 |
-
with st.spinner("Generating examples..."):
|
640 |
-
try:
|
641 |
-
stream = client.chat.completions.create(
|
642 |
-
model=selected_model,
|
643 |
-
messages=[{"role": "system", "content": st.session_state['system_prompt']}],
|
644 |
-
temperature=temperature,
|
645 |
-
stream=True,
|
646 |
-
#max_tokens=80000,
|
647 |
-
max_tokens=4000,
|
648 |
-
top_p=0.9,
|
649 |
-
# repetition_penalty=1.2,
|
650 |
-
#frequency_penalty=0.5, # Discourages frequent words
|
651 |
-
#presence_penalty=0.6,
|
652 |
-
)
|
653 |
-
#st.session_state['system_prompt'] = system_prompt
|
654 |
-
#new 24 march
|
655 |
-
st.session_state.messages.append({"role": "user", "content": system_prompt})
|
656 |
-
# # ####################
|
657 |
-
response = st.write_stream(stream)
|
658 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
659 |
-
# Initialize session state variables if they don't exist
|
660 |
-
if 'system_prompt' not in st.session_state:
|
661 |
-
st.session_state.system_prompt = system_prompt
|
662 |
-
|
663 |
-
if 'response' not in st.session_state:
|
664 |
-
st.session_state.response = response
|
665 |
-
|
666 |
-
if 'generated_examples' not in st.session_state:
|
667 |
-
st.session_state.generated_examples = []
|
668 |
-
|
669 |
-
if 'generated_examples_csv' not in st.session_state:
|
670 |
-
st.session_state.generated_examples_csv = None
|
671 |
-
|
672 |
-
if 'generated_examples_json' not in st.session_state:
|
673 |
-
st.session_state.generated_examples_json = None
|
674 |
-
|
675 |
-
# Parse response and generate examples list
|
676 |
-
examples_list = []
|
677 |
-
for line in response.split('\n'):
|
678 |
-
if line.strip():
|
679 |
-
parts = line.rsplit('Label:', 1)
|
680 |
-
if len(parts) == 2:
|
681 |
-
text = parts[0].strip()
|
682 |
-
label = parts[1].strip()
|
683 |
-
if text and label:
|
684 |
-
examples_list.append({
|
685 |
-
'text': text,
|
686 |
-
'label': label,
|
687 |
-
'system_prompt': st.session_state.system_prompt,
|
688 |
-
'system_role': st.session_state.system_role,
|
689 |
-
'task_type': 'Data Generation',
|
690 |
-
'Use few-shot example?': 'Yes' if use_few_shot else 'No',
|
691 |
-
})
|
692 |
-
|
693 |
-
# example_dict = {
|
694 |
-
# 'text': text,
|
695 |
-
# 'label': label,
|
696 |
-
# 'system_prompt': st.session_state.system_prompt,
|
697 |
-
# 'system_role': st.session_state.system_role,
|
698 |
-
# 'task_type': 'Data Generation',
|
699 |
-
# 'Use few-shot example?': 'Yes' if use_few_shot else 'No',
|
700 |
-
# }
|
701 |
-
# for attr in additional_attributes:
|
702 |
-
# example_dict[attr['attribute']] = random.choice(attr['topics'])
|
703 |
-
|
704 |
-
# examples_list.append(example_dict)
|
705 |
-
|
706 |
-
|
707 |
-
if examples_list:
|
708 |
-
# Update session state with new data
|
709 |
-
st.session_state.generated_examples = examples_list
|
710 |
-
|
711 |
-
# Generate CSV and JSON data
|
712 |
-
df = pd.DataFrame(examples_list)
|
713 |
-
st.session_state.generated_examples_csv = df.to_csv(index=False).encode('utf-8')
|
714 |
-
st.session_state.generated_examples_json = json.dumps(examples_list, indent=2).encode('utf-8')
|
715 |
-
|
716 |
-
# Vertical layout with centered "or" between buttons
|
717 |
-
st.download_button(
|
718 |
-
"📥 Download Generated Examples (CSV)",
|
719 |
-
st.session_state.generated_examples_csv,
|
720 |
-
"generated_examples.csv",
|
721 |
-
"text/csv",
|
722 |
-
key='download-csv-persistent'
|
723 |
-
)
|
724 |
-
|
725 |
-
# Add space and center the "or"
|
726 |
-
st.markdown("""
|
727 |
-
<div style='text-align: left; margin:15px 0; font-weight: 600; color: #666;'>. . . . . . or</div>
|
728 |
-
""", unsafe_allow_html=True)
|
729 |
-
|
730 |
-
st.download_button(
|
731 |
-
"📥 Download Generated Examples (JSON)",
|
732 |
-
st.session_state.generated_examples_json,
|
733 |
-
"generated_examples.json",
|
734 |
-
"application/json",
|
735 |
-
key='download-json-persistent'
|
736 |
-
)
|
737 |
-
# # Display the labeled examples
|
738 |
-
# st.markdown("##### 📋 Labeled Examples Preview")
|
739 |
-
# st.dataframe(df, use_container_width=True)
|
740 |
-
|
741 |
-
if st.button("Continue"):
|
742 |
-
if follow_up == "Generate more examples":
|
743 |
-
st.experimental_rerun()
|
744 |
-
elif follow_up == "Data Labeling":
|
745 |
-
st.session_state.task_choice = "Data Labeling"
|
746 |
-
st.experimental_rerun()
|
747 |
-
|
748 |
-
except Exception as e:
|
749 |
-
st.error("An error occurred during generation.")
|
750 |
-
st.error(f"Details: {e}")
|
751 |
-
|
752 |
-
|
753 |
-
# Lableing Process
|
754 |
-
elif st.session_state.task_choice == "Data Labeling":
|
755 |
-
st.header("🏷️ Data Labeling")
|
756 |
-
|
757 |
-
domain_selection = st.selectbox("Domain", ["Restaurant reviews", "E-Commerce reviews", "News", "AG News", "Tourism", "Custom"])
|
758 |
-
# 2. Handle custom domain input
|
759 |
-
custom_domain_valid = True # Assume valid until proven otherwise
|
760 |
-
|
761 |
-
if domain_selection == "Custom":
|
762 |
-
domain = st.text_input("Specify custom domain")
|
763 |
-
if not domain.strip():
|
764 |
-
st.error("Please specify a domain name.")
|
765 |
-
custom_domain_valid = False
|
766 |
-
else:
|
767 |
-
domain = domain_selection
|
768 |
-
|
769 |
-
|
770 |
-
# Classification type selection
|
771 |
-
classification_type = st.selectbox(
|
772 |
-
"Classification Type",
|
773 |
-
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification", "Named Entity Recognition (NER)"]
|
774 |
-
)
|
775 |
-
#NNew edit
|
776 |
-
# Labels setup based on classification type
|
777 |
-
labels = []
|
778 |
-
labels_valid = False
|
779 |
-
errors = []
|
780 |
-
|
781 |
-
if classification_type == "Sentiment Analysis":
|
782 |
-
st.write("### Sentiment Analysis Labels (Fixed)")
|
783 |
-
col1, col2, col3 = st.columns(3)
|
784 |
-
with col1:
|
785 |
-
label_1 = st.text_input("First class", "Positive", disabled=True)
|
786 |
-
with col2:
|
787 |
-
label_2 = st.text_input("Second class", "Negative", disabled=True)
|
788 |
-
with col3:
|
789 |
-
label_3 = st.text_input("Third class", "Neutral", disabled=True)
|
790 |
-
labels = ["Positive", "Negative", "Neutral"]
|
791 |
-
|
792 |
-
|
793 |
-
elif classification_type == "Binary Classification":
|
794 |
-
st.write("### Binary Classification Labels")
|
795 |
-
col1, col2 = st.columns(2)
|
796 |
-
|
797 |
-
with col1:
|
798 |
-
label_1 = st.text_input("First class", "Positive")
|
799 |
-
with col2:
|
800 |
-
label_2 = st.text_input("Second class", "Negative")
|
801 |
-
|
802 |
-
errors = []
|
803 |
-
labels = [label_1.strip(), label_2.strip()]
|
804 |
-
|
805 |
-
|
806 |
-
# Strip and lower-case labels for validation
|
807 |
-
label_1 = labels[0].strip()
|
808 |
-
label_2 = labels[1].strip()
|
809 |
-
|
810 |
-
# Check for empty class names
|
811 |
-
if not label_1:
|
812 |
-
errors.append("First class name is required.")
|
813 |
-
if not label_2:
|
814 |
-
errors.append("Second class name is required.")
|
815 |
-
|
816 |
-
# Check for duplicates (case insensitive)
|
817 |
-
if label_1.lower() == label_2.lower() and label_1 and label_2:
|
818 |
-
errors.append("Class names must be different.")
|
819 |
-
|
820 |
-
# Show errors or success
|
821 |
-
if errors:
|
822 |
-
for error in errors:
|
823 |
-
st.error(error)
|
824 |
-
else:
|
825 |
-
st.success("Binary class names are valid and unique!")
|
826 |
-
|
827 |
-
|
828 |
-
elif classification_type == "Multi-Class Classification":
|
829 |
-
st.write("### Multi-Class Classification Labels")
|
830 |
-
|
831 |
-
default_labels_by_domain = {
|
832 |
-
"News": ["Political", "Sports", "Entertainment", "Technology", "Business"],
|
833 |
-
"AG News": ["World", "Sports", "Business", "Sci/Tech"],
|
834 |
-
"Tourism": ["Accommodation", "Transportation", "Tourist Attractions",
|
835 |
-
"Food & Dining", "Local Experience", "Adventure Activities",
|
836 |
-
"Wellness & Spa", "Eco-Friendly Practices", "Family-Friendly",
|
837 |
-
"Luxury Tourism"],
|
838 |
-
"Restaurant reviews": ["Italian", "French", "American"],
|
839 |
-
"E-Commerce reviews": ["Mobile Phones & Accessories", "Laptops & Computers","Kitchen & Dining",
|
840 |
-
"Beauty & Personal Care", "Home & Furniture", "Clothing & Fashion",
|
841 |
-
"Shoes & Handbags", "Health & Wellness", "Electronics & Gadgets",
|
842 |
-
"Books & Stationery","Toys & Games", "Sports & Fitness",
|
843 |
-
"Grocery & Gourmet Food","Watches & Accessories", "Baby Products"]
|
844 |
-
}
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
# Ask user how many classes they want to define
|
849 |
-
num_classes = st.slider("Select the number of classes (labels)", min_value=3, max_value=10, value=3)
|
850 |
-
|
851 |
-
# Use default labels based on selected domain, if available
|
852 |
-
defaults = default_labels_by_domain.get(domain, [])
|
853 |
-
|
854 |
-
labels = []
|
855 |
-
errors = []
|
856 |
-
cols = st.columns(3) # For nicely arranged label inputs
|
857 |
-
|
858 |
-
for i in range(num_classes):
|
859 |
-
with cols[i % 3]: # Distribute inputs across columns
|
860 |
-
default_value = defaults[i] if i < len(defaults) else ""
|
861 |
-
label_input = st.text_input(f"Label {i + 1}", default_value)
|
862 |
-
normalized_label = label_input.strip().title()
|
863 |
-
|
864 |
-
if not normalized_label:
|
865 |
-
errors.append(f"Label {i + 1} is required.")
|
866 |
-
else:
|
867 |
-
labels.append(normalized_label)
|
868 |
-
|
869 |
-
# Check for duplicates (case-insensitive)
|
870 |
-
normalized_set = {label.lower() for label in labels}
|
871 |
-
if len(labels) != len(normalized_set):
|
872 |
-
errors.append("Label names must be unique (case-insensitive).")
|
873 |
-
|
874 |
-
# Show validation results
|
875 |
-
if errors:
|
876 |
-
for error in errors:
|
877 |
-
st.error(error)
|
878 |
-
else:
|
879 |
-
st.success("All label names are valid and unique!")
|
880 |
-
|
881 |
-
labels_valid = not errors # True if no validation errors
|
882 |
-
|
883 |
-
elif classification_type == "Named Entity Recognition (NER)":
|
884 |
-
# # NER entity options
|
885 |
-
# ner_entities = [
|
886 |
-
# "PERSON - Names of people, fictional characters, historical figures",
|
887 |
-
# "ORG - Companies, institutions, agencies, teams",
|
888 |
-
# "LOC - Physical locations (mountains, oceans, etc.)",
|
889 |
-
# "GPE - Countries, cities, states, political regions",
|
890 |
-
# "DATE - Calendar dates, years, centuries",
|
891 |
-
# "TIME - Times, durations",
|
892 |
-
# "MONEY - Monetary values with currency"
|
893 |
-
# ]
|
894 |
-
# selected_entities = st.multiselect(
|
895 |
-
# "Select entities to recognize",
|
896 |
-
# ner_entities,
|
897 |
-
# default=["PERSON - Names of people, fictional characters, historical figures",
|
898 |
-
# "ORG - Companies, institutions, agencies, teams",
|
899 |
-
# "LOC - Physical locations (mountains, oceans, etc.)",
|
900 |
-
# "GPE - Countries, cities, states, political regions",
|
901 |
-
# "DATE - Calendar dates, years, centuries",
|
902 |
-
# "TIME - Times, durations",
|
903 |
-
# "MONEY - Monetary values with currency"],
|
904 |
-
# key="ner_entity_selection"
|
905 |
-
# )
|
906 |
-
#new 22/4/2025
|
907 |
-
#if classification_type == "Named Entity Recognition (NER)":
|
908 |
-
use_few_shot = True
|
909 |
-
#new 22/4/2025
|
910 |
-
few_shot_examples = [
|
911 |
-
{"content": "Mount Everest is the tallest mountain in the world.", "label": "LOC: Mount Everest"},
|
912 |
-
{"content": "The President of the United States visited Paris last summer.", "label": "GPE: United States, GPE: Paris"},
|
913 |
-
{"content": "Amazon is expanding its offices in Berlin.", "label": "ORG: Amazon, GPE: Berlin"},
|
914 |
-
{"content": "J.K. Rowling wrote the Harry Potter books.", "label": "PERSON: J.K. Rowling"},
|
915 |
-
{"content": "Apple was founded in California in 1976.", "label": "ORG: Apple, GPE: California, DATE: 1976"},
|
916 |
-
{"content": "The Nile is the longest river in Africa.", "label": "LOC: Nile, GPE: Africa"},
|
917 |
-
{"content": "He arrived at 3 PM for the meeting.", "label": "TIME: 3 PM"},
|
918 |
-
{"content": "She bought the dress for $200.", "label": "MONEY: $200"},
|
919 |
-
{"content": "The event is scheduled for July 4th.", "label": "DATE: July 4th"},
|
920 |
-
{"content": "The World Health Organization is headquartered in Geneva.", "label": "ORG: World Health Organization, GPE: Geneva"}
|
921 |
-
]
|
922 |
-
###########
|
923 |
-
|
924 |
-
st.write("### Named Entity Recognition (NER) Entities")
|
925 |
-
|
926 |
-
# Predefined standard entities
|
927 |
-
ner_entities = [
|
928 |
-
"PERSON - Names of people, fictional characters, historical figures",
|
929 |
-
"ORG - Companies, institutions, agencies, teams",
|
930 |
-
"LOC - Physical locations (mountains, oceans, etc.)",
|
931 |
-
"GPE - Countries, cities, states, political regions",
|
932 |
-
"DATE - Calendar dates, years, centuries",
|
933 |
-
"TIME - Times, durations",
|
934 |
-
"MONEY - Monetary values with currency"
|
935 |
-
]
|
936 |
-
|
937 |
-
# User can add custom NER types
|
938 |
-
custom_ner_entities = []
|
939 |
-
if st.checkbox("Add custom NER entities?"):
|
940 |
-
num_custom_ner = st.slider("Number of custom NER entities", 1, 10, 1)
|
941 |
-
for i in range(num_custom_ner):
|
942 |
-
st.markdown(f"#### Custom Entity {i+1}")
|
943 |
-
custom_type = st.text_input(f"Entity type {i+1}", key=f"custom_ner_type_{i}")
|
944 |
-
custom_description = st.text_input(f"Description for {custom_type}", key=f"custom_ner_desc_{i}")
|
945 |
-
if custom_type and custom_description:
|
946 |
-
custom_ner_entities.append(f"{custom_type.upper()} - {custom_description}")
|
947 |
-
|
948 |
-
# Combine built-in and custom NERs
|
949 |
-
all_ner_options = ner_entities + custom_ner_entities
|
950 |
-
|
951 |
-
selected_entities = st.multiselect(
|
952 |
-
"Select entities to recognize",
|
953 |
-
all_ner_options,
|
954 |
-
default=ner_entities
|
955 |
-
)
|
956 |
-
|
957 |
-
# Extract entity type names (before the dash)
|
958 |
-
labels = [entity.split(" - ")[0].strip() for entity in selected_entities]
|
959 |
-
|
960 |
-
if not labels:
|
961 |
-
st.warning("Please select at least one entity type.")
|
962 |
-
labels = ["PERSON"]
|
963 |
-
|
964 |
-
##########
|
965 |
-
|
966 |
-
# # Extract just the entity type (before the dash)
|
967 |
-
# labels = [entity.split(" - ")[0] for entity in selected_entities]
|
968 |
-
|
969 |
-
# if not labels:
|
970 |
-
# st.warning("Please select at least one entity type")
|
971 |
-
# labels = ["PERSON"] # Default if nothing selected
|
972 |
-
|
973 |
-
|
974 |
-
|
975 |
-
|
976 |
-
|
977 |
-
#NNew edit
|
978 |
-
# elif classification_type == "Multi-Class Classification":
|
979 |
-
# st.write("### Multi-Class Classification Labels")
|
980 |
-
|
981 |
-
# default_labels_by_domain = {
|
982 |
-
# "News": ["Political", "Sports", "Entertainment", "Technology", "Business"],
|
983 |
-
# "AG News": ["World", "Sports", "Business", "Sci/Tech"],
|
984 |
-
# "Tourism": ["Accommodation", "Transportation", "Tourist Attractions",
|
985 |
-
# "Food & Dining", "Local Experience", "Adventure Activities",
|
986 |
-
# "Wellness & Spa", "Eco-Friendly Practices", "Family-Friendly",
|
987 |
-
# "Luxury Tourism"],
|
988 |
-
# "Restaurant reviews": ["Italian", "French", "American"]
|
989 |
-
# }
|
990 |
-
# num_classes = st.slider("Number of classes", 3, 10, 3)
|
991 |
-
|
992 |
-
# # Get defaults for selected domain, or empty list
|
993 |
-
# defaults = default_labels_by_domain.get(domain, [])
|
994 |
-
|
995 |
-
# labels = []
|
996 |
-
# errors = []
|
997 |
-
# cols = st.columns(3)
|
998 |
-
|
999 |
-
# for i in range(num_classes):
|
1000 |
-
# with cols[i % 3]:
|
1001 |
-
# default_value = defaults[i] if i < len(defaults) else ""
|
1002 |
-
# label_input = st.text_input(f"Class {i+1}", default_value)
|
1003 |
-
# normalized_label = label_input.strip().title()
|
1004 |
-
|
1005 |
-
# if not normalized_label:
|
1006 |
-
# errors.append(f"Class {i+1} name is required.")
|
1007 |
-
# else:
|
1008 |
-
# labels.append(normalized_label)
|
1009 |
-
|
1010 |
-
# # Check for duplicates (case-insensitive)
|
1011 |
-
# if len(labels) != len(set(labels)):
|
1012 |
-
# errors.append("Labels names must be unique (case-insensitive, normalized to Title Case).")
|
1013 |
-
|
1014 |
-
# # Show validation results
|
1015 |
-
# if errors:
|
1016 |
-
# for error in errors:
|
1017 |
-
# st.error(error)
|
1018 |
-
# else:
|
1019 |
-
# st.success("All Labels names are valid and unique!")
|
1020 |
-
# labels_valid = not errors # Will be True only if there are no label errors
|
1021 |
-
|
1022 |
-
|
1023 |
-
|
1024 |
-
|
1025 |
-
# else:
|
1026 |
-
# num_classes = st.slider("Number of classes", 3, 23, 3, key="label_num_classes")
|
1027 |
-
# labels = []
|
1028 |
-
# cols = st.columns(3)
|
1029 |
-
# for i in range(num_classes):
|
1030 |
-
# with cols[i % 3]:
|
1031 |
-
# label = st.text_input(f"Class {i+1}", f"Class_{i+1}", key=f"label_class_{i}")
|
1032 |
-
# labels.append(label)
|
1033 |
-
|
1034 |
-
use_few_shot = st.toggle("Use few-shot examples for labeling")
|
1035 |
-
few_shot_examples = []
|
1036 |
-
if use_few_shot:
|
1037 |
-
num_few_shot = st.slider("Number of few-shot examples", 1, 10, 1)
|
1038 |
-
for i in range(num_few_shot):
|
1039 |
-
with st.expander(f"Few-shot Example {i+1}"):
|
1040 |
-
content = st.text_area(f"Content", key=f"label_few_shot_content_{i}")
|
1041 |
-
label = st.selectbox(f"Label", labels, key=f"label_few_shot_label_{i}")
|
1042 |
-
if content and label:
|
1043 |
-
few_shot_examples.append(f"{content}\nLabel: {label}")
|
1044 |
-
|
1045 |
-
num_examples = st.number_input("Number of examples to classify", 1, 100, 1)
|
1046 |
-
|
1047 |
-
examples_to_classify = []
|
1048 |
-
if num_examples <= 10:
|
1049 |
-
for i in range(num_examples):
|
1050 |
-
example = st.text_area(f"Example {i+1}", key=f"example_{i}")
|
1051 |
-
if example:
|
1052 |
-
examples_to_classify.append(example)
|
1053 |
-
else:
|
1054 |
-
examples_text = st.text_area(
|
1055 |
-
"Enter examples (one per line)",
|
1056 |
-
height=300,
|
1057 |
-
help="Enter each example on a new line"
|
1058 |
-
)
|
1059 |
-
if examples_text:
|
1060 |
-
examples_to_classify = [ex.strip() for ex in examples_text.split('\n') if ex.strip()]
|
1061 |
-
if len(examples_to_classify) > num_examples:
|
1062 |
-
examples_to_classify = examples_to_classify[:num_examples]
|
1063 |
-
|
1064 |
-
#New Wedyan
|
1065 |
-
#default_system_role = f"You are a professional {classification_type} expert, your role is to classify the provided text examples for {domain} domain."
|
1066 |
-
# System role customization
|
1067 |
-
default_system_role = (f"You are a highly skilled {classification_type} expert."
|
1068 |
-
f" Your task is to accurately classify the provided text examples within the {domain} domain."
|
1069 |
-
f" Ensure that all classifications are precise, context-aware, and aligned with domain-specific standards and best practices."
|
1070 |
-
)
|
1071 |
-
system_role = st.text_area("Modify System Role (optional)",
|
1072 |
-
value=default_system_role,
|
1073 |
-
key="system_role_input")
|
1074 |
-
st.session_state['system_role'] = system_role if system_role else default_system_role
|
1075 |
-
# Labels initialization
|
1076 |
-
#labels = []
|
1077 |
-
####
|
1078 |
-
|
1079 |
-
user_prompt = st.text_area("User prompt (optional)", key="label_instructions")
|
1080 |
-
|
1081 |
-
few_shot_text = "\n\n".join(few_shot_examples) if few_shot_examples else ""
|
1082 |
-
examples_text = "\n".join([f"{i+1}. {ex}" for i, ex in enumerate(examples_to_classify)])
|
1083 |
-
|
1084 |
-
# Customize prompt template based on classification type
|
1085 |
-
if classification_type == "Named Entity Recognition (NER)":
|
1086 |
-
# label_prompt_template = PromptTemplate(
|
1087 |
-
# input_variables=["system_role", "labels", "few_shot_examples", "examples", "domain", "user_prompt"],
|
1088 |
-
# template=(
|
1089 |
-
# "{system_role}\n"
|
1090 |
-
# #"- You are a professional Named Entity Recognition (NER) expert in {domain} domain. Your role is to identify and extract the following entity types: {labels}.\n"
|
1091 |
-
# "- For each text example provided, identify all entities of the requested types.\n"
|
1092 |
-
# "- Use the following entities: {labels}.\n"
|
1093 |
-
# "- Return each example followed by the entities you found in this format: 'Example text.\n \n Entities:\n [ENTITY_TYPE: entity text\n\n, ENTITY_TYPE: entity text\n\n, ...] or [No entities found]'\n"
|
1094 |
-
# "- If no entities of the requested types are found, indicate 'No entities found' in this text.\n"
|
1095 |
-
# "- Be precise about entity boundaries - don't include unnecessary words.\n"
|
1096 |
-
# "- Do not provide any additional information or explanations.\n"
|
1097 |
-
# "- Additional instructions:\n {user_prompt}\n\n"
|
1098 |
-
# "- Use user few-shot examples as guidance if provided:\n{few_shot_examples}\n\n"
|
1099 |
-
# "- Examples to analyze:\n{examples}\n\n"
|
1100 |
-
# "Output:\n"
|
1101 |
-
# )
|
1102 |
-
# )
|
1103 |
-
#new 22/4/2025
|
1104 |
-
# label_prompt_template = PromptTemplate(
|
1105 |
-
# input_variables=["system_role", "labels", "few_shot_examples", "examples", "domain", "user_prompt"],
|
1106 |
-
# template=(
|
1107 |
-
# "{system_role}\n"
|
1108 |
-
# "- You are performing Named Entity Recognition (NER) in the domain of {domain}.\n"
|
1109 |
-
# "- Use the following entity types: {labels}.\n\n"
|
1110 |
-
# "### Reasoning Steps:\n"
|
1111 |
-
# "1. Read the example carefully.\n"
|
1112 |
-
# "2. For each named entity mentioned, determine its meaning and role in the sentence.\n"
|
1113 |
-
# "3. Think about the **context**: Is it a physical location (LOC)? A geopolitical region (GPE)? A person (PERSON)?\n"
|
1114 |
-
# "4. Based on the definition of each label, assign the most **specific and correct** label.\n\n"
|
1115 |
-
# "For example:\n"
|
1116 |
-
# "- 'Mount Everest' → LOC (it's a mountain)\n"
|
1117 |
-
# "- 'France' → GPE (it's a country)\n"
|
1118 |
-
# "- 'Microsoft' → ORG\n"
|
1119 |
-
# "- 'John Smith' → PERSON\n\n"
|
1120 |
-
# "- Return each example followed by the entities you found in this format:\n"
|
1121 |
-
# "'Example text.'\nEntities: [ENTITY_TYPE: entity text, ENTITY_TYPE: entity text, ...] or [No entities found]\n"
|
1122 |
-
# "- If no entities of the requested types are found, return 'No entities found'.\n"
|
1123 |
-
# "- Be precise about entity boundaries - don't include extra words.\n"
|
1124 |
-
# "- Do not explain or justify your answers.\n\n"
|
1125 |
-
# "Additional instructions:\n{user_prompt}\n\n"
|
1126 |
-
# "Few-shot examples:\n{few_shot_examples}\n\n"
|
1127 |
-
# "Examples to label:\n{examples}\n"
|
1128 |
-
# "Output:\n"
|
1129 |
-
# )
|
1130 |
-
#)
|
1131 |
-
# label_prompt_template = PromptTemplate(
|
1132 |
-
# input_variables=["system_role", "labels", "few_shot_examples", "examples", "domain", "user_prompt"],
|
1133 |
-
# template=(
|
1134 |
-
# "{system_role}\n"
|
1135 |
-
# "- You are an expert at Named Entity Recognition (NER) for domain: {domain}.\n"
|
1136 |
-
# "- Use these entity types: {labels}.\n\n"
|
1137 |
-
# "### Output Format:\n"
|
1138 |
-
# # "Return each example followed by the entities you found in this format: 'Example text.\n Entities:\n [ENTITY_TYPE: entity text\n\"
|
1139 |
-
# "Return each example followed by the entities you found in this format: 'Example text.\n 'Entity types:\n "Then group the entities under each label like this:\n" "
|
1140 |
-
# #"Then Start with this line exactly: 'Entity types\n'\n"
|
1141 |
-
# #"Then group the entities under each label like this:\n"
|
1142 |
-
# "\n PERSON – Angela Merkel, John Smith\n\n"
|
1143 |
-
# "\ ORG – Google, United Nations\n\n"
|
1144 |
-
# "\n DATE – January 1st, 2023\n\n"
|
1145 |
-
# "\n ... and so on.\n\n"
|
1146 |
-
# "If entity {labels} not found, do not write it in your response\n"
|
1147 |
-
# "- Do NOT output them inline after the text.\n"
|
1148 |
-
# "- Do NOT repeat the sentence.\n"
|
1149 |
-
# "- If no entities are found for a type, skip it.\n"
|
1150 |
-
# "- Keep the format consistent.\n\n"
|
1151 |
-
# "User Instructions:\n{user_prompt}\n\n"
|
1152 |
-
# "Few-shot Examples:\n{few_shot_examples}\n\n"
|
1153 |
-
# "Examples to analyze:\n{examples}"
|
1154 |
-
# )
|
1155 |
-
# )
|
1156 |
-
|
1157 |
-
|
1158 |
-
label_prompt_template = PromptTemplate(
|
1159 |
-
input_variables=["system_role", "labels", "few_shot_examples", "examples", "domain", "user_prompt"],
|
1160 |
-
template=(
|
1161 |
-
"{system_role}\n"
|
1162 |
-
"- You are an expert at Named Entity Recognition (NER) for domain: {domain}.\n"
|
1163 |
-
"- Use these entity types: {labels}.\n\n"
|
1164 |
-
"### Output Format:\n"
|
1165 |
-
"Return each example followed by the entities you found in this format:\n"
|
1166 |
-
"'Example text.\nEntity types:\n"
|
1167 |
-
"Then group the entities under each label like this:\n"
|
1168 |
-
"\nPERSON – Angela Merkel, John Smith\n"
|
1169 |
-
"ORG – Google, United Nations\n"
|
1170 |
-
"DATE – January 1st, 2023\n"
|
1171 |
-
"... and so on.\n\n"
|
1172 |
-
"Each new entities group should be in a new line.\n"
|
1173 |
-
"If entity type {labels} is not found, do not write it in your response.\n"
|
1174 |
-
"- Do NOT output them inline after the text.\n"
|
1175 |
-
"- Do NOT repeat the sentence.\n"
|
1176 |
-
"- If no entities are found for a type, skip it.\n"
|
1177 |
-
"- Keep the format consistent.\n\n"
|
1178 |
-
"User Instructions:\n{user_prompt}\n\n"
|
1179 |
-
"Few-shot Examples:\n{few_shot_examples}\n\n"
|
1180 |
-
"Examples to analyze:\n{examples}"
|
1181 |
-
)
|
1182 |
-
)
|
1183 |
-
|
1184 |
-
#######
|
1185 |
-
else:
|
1186 |
-
label_prompt_template = PromptTemplate(
|
1187 |
-
|
1188 |
-
input_variables=["system_role", "classification_type", "labels", "few_shot_examples", "examples","domain", "user_prompt"],
|
1189 |
-
template=(
|
1190 |
-
#"- Let'\s think step by step:"
|
1191 |
-
"{system_role}\n"
|
1192 |
-
# "- You are a professional {classification_type} expert in {domain} domain. Your role is to classify the following examples using these labels: {labels}.\n"
|
1193 |
-
"- Use the following instructions:\n"
|
1194 |
-
"- Use the following labels: {labels}.\n"
|
1195 |
-
"- Return the classified text followed by the label in this format: 'text. Label: [label]'\n"
|
1196 |
-
"- Do not provide any additional information or explanations\n"
|
1197 |
-
"- User prompt:\n {user_prompt}\n\n"
|
1198 |
-
"- Use user provided examples as guidence in the classification process:\n\n {few_shot_examples}\n"
|
1199 |
-
"- Examples to classify:\n{examples}\n\n"
|
1200 |
-
"- Think step by step then classify the examples"
|
1201 |
-
#"Output:\n"
|
1202 |
-
))
|
1203 |
-
|
1204 |
-
# Check if few_shot_examples is already a formatted string
|
1205 |
-
# Check if few_shot_examples is already a formatted string
|
1206 |
-
if isinstance(few_shot_examples, str):
|
1207 |
-
formatted_few_shot = few_shot_examples
|
1208 |
-
# If it's a list of already formatted strings
|
1209 |
-
elif isinstance(few_shot_examples, list) and all(isinstance(ex, str) for ex in few_shot_examples):
|
1210 |
-
formatted_few_shot = "\n".join(few_shot_examples)
|
1211 |
-
# If it's a list of dictionaries with 'content' and 'label' keys
|
1212 |
-
elif isinstance(few_shot_examples, list) and all(isinstance(ex, dict) and 'content' in ex and 'label' in ex for ex in few_shot_examples):
|
1213 |
-
formatted_few_shot = "\n".join([f"{ex['content']}\nLabel: {ex['label']}" for ex in few_shot_examples])
|
1214 |
-
else:
|
1215 |
-
formatted_few_shot = ""
|
1216 |
-
# #new 22/4/2025
|
1217 |
-
# few_shot_examples = [
|
1218 |
-
# {"content": "Mount Everest is the tallest mountain in the world.", "label": "LOC: Mount Everest"},
|
1219 |
-
# {"content": "The President of the United States visited Paris last summer.", "label": "GPE: United States, GPE: Paris"},
|
1220 |
-
# {"content": "Amazon is expanding its offices in Berlin.", "label": "ORG: Amazon, GPE: Berlin"},
|
1221 |
-
# {"content": "J.K. Rowling wrote the Harry Potter books.", "label": "PERSON: J.K. Rowling"},
|
1222 |
-
# {"content": "Apple was founded in California in 1976.", "label": "ORG: Apple, GPE: California, DATE: 1976"},
|
1223 |
-
# {"content": "The Nile is the longest river in Africa.", "label": "LOC: Nile, GPE: Africa"},
|
1224 |
-
# {"content": "He arrived at 3 PM for the meeting.", "label": "TIME: 3 PM"},
|
1225 |
-
# {"content": "She bought the dress for $200.", "label": "MONEY: $200"},
|
1226 |
-
# {"content": "The event is scheduled for July 4th.", "label": "DATE: July 4th"},
|
1227 |
-
# {"content": "The World Health Organization is headquartered in Geneva.", "label": "ORG: World Health Organization, GPE: Geneva"}
|
1228 |
-
# ]
|
1229 |
-
# ###########
|
1230 |
-
# new 22/4/2025
|
1231 |
-
#formatted_few_shot = "\n".join([f"{ex['content']}\nEntities: [{ex['label']}]" for ex in few_shot_examples])
|
1232 |
-
formatted_few_shot = "\n\n".join([f"{ex['content']}\n\nEntity types\n{ex['label']}" for ex in few_shot_examples])
|
1233 |
-
|
1234 |
-
###########
|
1235 |
-
system_prompt = label_prompt_template.format(
|
1236 |
-
system_role=st.session_state['system_role'],
|
1237 |
-
classification_type=classification_type,
|
1238 |
-
domain=domain,
|
1239 |
-
examples="\n".join(examples_to_classify),
|
1240 |
-
labels=", ".join(labels),
|
1241 |
-
user_prompt=user_prompt,
|
1242 |
-
few_shot_examples=formatted_few_shot
|
1243 |
-
)
|
1244 |
-
|
1245 |
-
# Step 2: Store the system_prompt in st.session_state
|
1246 |
-
st.session_state['system_prompt'] = system_prompt
|
1247 |
-
#::contentReference[oaicite:0]{index=0}
|
1248 |
-
st.write("System Prompt:")
|
1249 |
-
#st.code(system_prompt)
|
1250 |
-
#st.code(st.session_state['system_prompt'])
|
1251 |
-
st.text_area("System Prompt", value=st.session_state['system_prompt'], height=300, max_chars=None, key=None, help=None, disabled=True)
|
1252 |
-
|
1253 |
-
|
1254 |
-
|
1255 |
-
if st.button("🏷️ Label Data"):
|
1256 |
-
if examples_to_classify:
|
1257 |
-
with st.spinner("Labeling data..."):
|
1258 |
-
#Generate the system prompt based on classification type
|
1259 |
-
if classification_type == "Named Entity Recognition (NER)":
|
1260 |
-
system_prompt = label_prompt_template.format(
|
1261 |
-
system_role=st.session_state['system_role'],
|
1262 |
-
labels=", ".join(labels),
|
1263 |
-
domain = domain,
|
1264 |
-
few_shot_examples=few_shot_text,
|
1265 |
-
examples=examples_text,
|
1266 |
-
user_prompt=user_prompt
|
1267 |
-
#new
|
1268 |
-
#'Use few-shot example?': 'Yes' if use_few_shot else 'No',
|
1269 |
-
)
|
1270 |
-
# if classification_type == "Named Entity Recognition (NER)":
|
1271 |
-
# # Step 1: Split the full response by example
|
1272 |
-
# raw_outputs = [block.strip() for block in response.strip().split("Entity types") if block.strip()]
|
1273 |
-
# inputs = [ex.strip() for ex in examples_to_classify]
|
1274 |
-
|
1275 |
-
# # Step 2: Match inputs with NER output blocks
|
1276 |
-
# labeled_examples = []
|
1277 |
-
# for i, (text, output_block) in enumerate(zip(inputs, raw_outputs)):
|
1278 |
-
# labeled_examples.append({
|
1279 |
-
# 'text': text,
|
1280 |
-
# 'entities': f"Entity types\n{output_block.strip()}",
|
1281 |
-
# 'system_prompt': st.session_state.system_prompt,
|
1282 |
-
# 'system_role': st.session_state.system_role,
|
1283 |
-
# 'task_type': 'Named Entity Recognition (NER)',
|
1284 |
-
# 'Use few-shot example?': 'Yes' if use_few_shot else 'No',
|
1285 |
-
# })
|
1286 |
-
|
1287 |
-
# if classification_type == "Named Entity Recognition (NER)":
|
1288 |
-
# # Step 1: Split the full response by example
|
1289 |
-
# raw_outputs = [block.strip() for block in response.strip().split("Entity types") if block.strip()]
|
1290 |
-
# inputs = [ex.strip() for ex in examples_to_classify]
|
1291 |
-
|
1292 |
-
# # Step 2: Match inputs with NER output blocks
|
1293 |
-
# labeled_examples = []
|
1294 |
-
# for i, (text, output_block) in enumerate(zip(inputs, raw_outputs)):
|
1295 |
-
# labeled_examples.append({
|
1296 |
-
# 'text': text,
|
1297 |
-
# 'entities': f"Entity types\n{output_block.strip()}",
|
1298 |
-
# 'system_prompt': st.session_state.system_prompt,
|
1299 |
-
# 'system_role': st.session_state.system_role,
|
1300 |
-
# 'task_type': 'Named Entity Recognition (NER)',
|
1301 |
-
# 'Use few-shot example?': 'Yes' if use_few_shot else 'No',
|
1302 |
-
# })
|
1303 |
-
|
1304 |
-
|
1305 |
-
# import re
|
1306 |
-
|
1307 |
-
# if classification_type == "Named Entity Recognition (NER)":
|
1308 |
-
# # Use regex to split on "Entity types" while keeping it attached to each block
|
1309 |
-
# blocks = re.split(r"(Entity types)", response.strip())
|
1310 |
-
|
1311 |
-
# # Recombine 'Entity types' with each block after splitting
|
1312 |
-
# raw_outputs = [
|
1313 |
-
# (blocks[i] + blocks[i+1]).strip()
|
1314 |
-
# for i in range(1, len(blocks) - 1, 2)
|
1315 |
-
# ]
|
1316 |
-
|
1317 |
-
# inputs = [ex.strip() for ex in examples_to_classify]
|
1318 |
-
|
1319 |
-
# labeled_examples = []
|
1320 |
-
# for i, (text, output_block) in enumerate(zip(inputs, raw_outputs)):
|
1321 |
-
# labeled_examples.append({
|
1322 |
-
# 'text': text,
|
1323 |
-
# 'entities': output_block,
|
1324 |
-
# 'system_prompt': st.session_state.system_prompt,
|
1325 |
-
# 'system_role': st.session_state.system_role,
|
1326 |
-
# 'task_type': 'Named Entity Recognition (NER)',
|
1327 |
-
# 'Use few-shot example?': 'Yes' if use_few_shot else 'No',
|
1328 |
-
# })
|
1329 |
-
|
1330 |
-
|
1331 |
-
else:
|
1332 |
-
system_prompt = label_prompt_template.format(
|
1333 |
-
classification_type=classification_type,
|
1334 |
-
system_role=st.session_state['system_role'],
|
1335 |
-
domain = domain,
|
1336 |
-
labels=", ".join(labels),
|
1337 |
-
few_shot_examples=few_shot_text,
|
1338 |
-
examples=examples_text,
|
1339 |
-
user_prompt=user_prompt
|
1340 |
-
)
|
1341 |
-
try:
|
1342 |
-
stream = client.chat.completions.create(
|
1343 |
-
model=selected_model,
|
1344 |
-
messages=[{"role": "system", "content": system_prompt}],
|
1345 |
-
temperature=temperature,
|
1346 |
-
stream=True,
|
1347 |
-
#max_tokens=20000,
|
1348 |
-
max_tokens=4000,
|
1349 |
-
top_p = 0.9,
|
1350 |
-
|
1351 |
-
)
|
1352 |
-
#new 24 March
|
1353 |
-
# Append user message
|
1354 |
-
st.session_state.messages.append({"role": "user", "content": system_prompt})
|
1355 |
-
#################
|
1356 |
-
response = st.write_stream(stream)
|
1357 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
1358 |
-
# Display the labeled examples
|
1359 |
-
# # Optional: If you want to add it as a chat-style message log
|
1360 |
-
# preview_str = st.session_state.labeled_preview.to_markdown(index=False)
|
1361 |
-
# st.session_state.messages.append({"role": "assistant", "content": f"Here is a preview of the labeled examples:\n\n{preview_str}"})
|
1362 |
-
|
1363 |
-
|
1364 |
-
# # Stream response and append assistant message
|
1365 |
-
# #14/4/2024
|
1366 |
-
# response = st.write_stream(stream)
|
1367 |
-
# st.session_state.messages.append({"role": "assistant", "content": response})
|
1368 |
-
|
1369 |
-
# Initialize session state variables if they don't exist
|
1370 |
-
if 'system_prompt' not in st.session_state:
|
1371 |
-
st.session_state.system_prompt = system_prompt
|
1372 |
-
|
1373 |
-
if 'response' not in st.session_state:
|
1374 |
-
st.session_state.response = response
|
1375 |
-
|
1376 |
-
if 'generated_examples' not in st.session_state:
|
1377 |
-
st.session_state.generated_examples = []
|
1378 |
-
|
1379 |
-
if 'generated_examples_csv' not in st.session_state:
|
1380 |
-
st.session_state.generated_examples_csv = None
|
1381 |
-
|
1382 |
-
if 'generated_examples_json' not in st.session_state:
|
1383 |
-
st.session_state.generated_examples_json = None
|
1384 |
-
|
1385 |
-
|
1386 |
-
|
1387 |
-
|
1388 |
-
# Save labeled examples to CSV
|
1389 |
-
#new 14/4/2025
|
1390 |
-
#labeled_examples = []
|
1391 |
-
# if classification_type == "Named Entity Recognition (NER)":
|
1392 |
-
# labeled_examples = []
|
1393 |
-
# for line in response.split('\n'):
|
1394 |
-
# if line.strip():
|
1395 |
-
# parts = line.rsplit('Entities:', 1)
|
1396 |
-
# if len(parts) == 2:
|
1397 |
-
# text = parts[0].strip()
|
1398 |
-
# entities = parts[1].strip()
|
1399 |
-
# if text and entities:
|
1400 |
-
# labeled_examples.append({
|
1401 |
-
# 'text': text,
|
1402 |
-
# 'entities': entities,
|
1403 |
-
# 'system_prompt': st.session_state.system_prompt,
|
1404 |
-
# 'system_role': st.session_state.system_role,
|
1405 |
-
# 'task_type': 'Named Entity Recognition (NER)',
|
1406 |
-
# 'Use few-shot example?': 'Yes' if use_few_shot else 'No',
|
1407 |
-
# })
|
1408 |
-
|
1409 |
-
#new 22/4/2025
|
1410 |
-
labeled_examples = []
|
1411 |
-
if classification_type == "Named Entity Recognition (NER)":
|
1412 |
-
labeled_examples = [{
|
1413 |
-
'ner_output': response.strip(),
|
1414 |
-
'system_prompt': st.session_state.system_prompt,
|
1415 |
-
'system_role': st.session_state.system_role,
|
1416 |
-
'task_type': 'Named Entity Recognition (NER)',
|
1417 |
-
'Use few-shot example?': 'Yes' if use_few_shot else 'No',
|
1418 |
-
}]
|
1419 |
-
|
1420 |
-
######
|
1421 |
-
|
1422 |
-
|
1423 |
-
else:
|
1424 |
-
labeled_examples = []
|
1425 |
-
for line in response.split('\n'):
|
1426 |
-
if line.strip():
|
1427 |
-
parts = line.rsplit('Label:', 1)
|
1428 |
-
if len(parts) == 2:
|
1429 |
-
text = parts[0].strip()
|
1430 |
-
label = parts[1].strip()
|
1431 |
-
if text and label:
|
1432 |
-
labeled_examples.append({
|
1433 |
-
'text': text,
|
1434 |
-
'label': label,
|
1435 |
-
'system_prompt': st.session_state.system_prompt,
|
1436 |
-
'system_role': st.session_state.system_role,
|
1437 |
-
'task_type': 'Data Labeling',
|
1438 |
-
'Use few-shot example?': 'Yes' if use_few_shot else 'No',
|
1439 |
-
})
|
1440 |
-
# Save and provide download options
|
1441 |
-
if labeled_examples:
|
1442 |
-
# Update session state
|
1443 |
-
st.session_state.labeled_examples = labeled_examples
|
1444 |
-
|
1445 |
-
# Convert to CSV and JSON
|
1446 |
-
df = pd.DataFrame(labeled_examples)
|
1447 |
-
#new 22/4/2025
|
1448 |
-
# CSV
|
1449 |
-
st.session_state.labeled_examples_csv = df.to_csv(index=False).encode('utf-8')
|
1450 |
-
|
1451 |
-
# JSON
|
1452 |
-
st.session_state.labeled_examples_json = json.dumps({
|
1453 |
-
"metadata": {
|
1454 |
-
"domain": domain,
|
1455 |
-
"labels": labels,
|
1456 |
-
"used_few_shot": use_few_shot,
|
1457 |
-
"task_type": "Named Entity Recognition (NER)",
|
1458 |
-
"timestamp": datetime.now().isoformat()
|
1459 |
-
},
|
1460 |
-
"examples": labeled_examples
|
1461 |
-
}, indent=2).encode('utf-8')
|
1462 |
-
|
1463 |
-
############
|
1464 |
-
# CSV
|
1465 |
-
# st.session_state.labeled_examples_csv = df.to_csv(index=False).encode('utf-8')
|
1466 |
-
|
1467 |
-
# # JSON
|
1468 |
-
# st.session_state.labeled_examples_json = json.dumps({
|
1469 |
-
# "metadata": {
|
1470 |
-
# "domain": domain,
|
1471 |
-
# "labels": labels,
|
1472 |
-
# "used_few_shot": use_few_shot,
|
1473 |
-
# "task_type": "Named Entity Recognition (NER)",
|
1474 |
-
# "timestamp": datetime.now().isoformat()
|
1475 |
-
# },
|
1476 |
-
# "examples": labeled_examples
|
1477 |
-
# }, indent=2).encode('utf-8')
|
1478 |
-
|
1479 |
-
########
|
1480 |
-
# st.session_state.labeled_examples_csv = df.to_csv(index=False).encode('utf-8')
|
1481 |
-
# st.session_state.labeled_examples_json = json.dumps(labeled_examples, indent=2).encode('utf-8')
|
1482 |
-
|
1483 |
-
# Download buttons
|
1484 |
-
st.download_button(
|
1485 |
-
"📥 Download Labeled Examples (CSV)",
|
1486 |
-
st.session_state.labeled_examples_csv,
|
1487 |
-
"labeled_examples.csv",
|
1488 |
-
"text/csv",
|
1489 |
-
key='download-labeled-csv'
|
1490 |
-
)
|
1491 |
-
|
1492 |
-
st.markdown("""
|
1493 |
-
<div style='text-align: left; margin:15px 0; font-weight: 600; color: #666;'>. . . . . . or</div>
|
1494 |
-
""", unsafe_allow_html=True)
|
1495 |
-
|
1496 |
-
st.download_button(
|
1497 |
-
"📥 Download Labeled Examples (JSON)",
|
1498 |
-
st.session_state.labeled_examples_json,
|
1499 |
-
"labeled_examples.json",
|
1500 |
-
"application/json",
|
1501 |
-
key='download-labeled-json'
|
1502 |
-
)
|
1503 |
-
# Display the labeled examples
|
1504 |
-
st.markdown("##### 📋 Labeled Examples Preview")
|
1505 |
-
st.dataframe(df, use_container_width=True)
|
1506 |
-
# Display section
|
1507 |
-
#st.markdown("### 📋 Labeled Examples Preview")
|
1508 |
-
#st.dataframe(st.session_state.labeled_preview, use_container_width=True)
|
1509 |
-
|
1510 |
-
|
1511 |
-
|
1512 |
-
# if labeled_examples:
|
1513 |
-
# df = pd.DataFrame(labeled_examples)
|
1514 |
-
# csv = df.to_csv(index=False).encode('utf-8')
|
1515 |
-
# st.download_button(
|
1516 |
-
# "📥 Download Labeled Examples",
|
1517 |
-
# csv,
|
1518 |
-
# "labeled_examples.csv",
|
1519 |
-
# "text/csv",
|
1520 |
-
# key='download-labeled-csv'
|
1521 |
-
# )
|
1522 |
-
# # Add space and center the "or"
|
1523 |
-
# st.markdown("""
|
1524 |
-
# <div style='text-align: left; margin:15px 0; font-weight: 600; color: #666;'>. . . . . . or</div>
|
1525 |
-
# """, unsafe_allow_html=True)
|
1526 |
-
|
1527 |
-
# if labeled_examples:
|
1528 |
-
# df = pd.DataFrame(labeled_examples)
|
1529 |
-
# csv = df.to_csv(index=False).encode('utf-8')
|
1530 |
-
# st.download_button(
|
1531 |
-
# "📥 Download Labeled Examples",
|
1532 |
-
# csv,
|
1533 |
-
# "labeled_examples.json",
|
1534 |
-
# "text/json",
|
1535 |
-
# key='download-labeled-JSON'
|
1536 |
-
# )
|
1537 |
-
|
1538 |
-
# Add follow-up interaction options
|
1539 |
-
#st.markdown("---")
|
1540 |
-
#follow_up = st.radio(
|
1541 |
-
#"What would you like to do next?",
|
1542 |
-
#["Label more data", "Data Generation"],
|
1543 |
-
# key="labeling_follow_up"
|
1544 |
-
# )
|
1545 |
-
|
1546 |
-
if st.button("Continue"):
|
1547 |
-
if follow_up == "Label more data":
|
1548 |
-
st.session_state.examples_to_classify = []
|
1549 |
-
st.experimental_rerun()
|
1550 |
-
elif follow_up == "Data Generation":
|
1551 |
-
st.session_state.task_choice = "Data Labeling"
|
1552 |
-
st.experimental_rerun()
|
1553 |
-
|
1554 |
-
except Exception as e:
|
1555 |
-
st.error("An error occurred during labeling.")
|
1556 |
-
st.error(f"Details: {e}")
|
1557 |
-
else:
|
1558 |
-
st.warning("Please enter at least one example to classify.")
|
1559 |
-
|
1560 |
-
#st.session_state.messages.append({"role": "assistant", "content": response})
|
1561 |
-
|
1562 |
-
|
1563 |
-
|
1564 |
-
|
1565 |
-
# Footer
|
1566 |
-
st.markdown("---")
|
1567 |
-
st.markdown(
|
1568 |
-
"""
|
1569 |
-
<div style='text-align: center'>
|
1570 |
-
<p>Made with ❤️ by Wedyan AlSakran 2025</p>
|
1571 |
-
</div>
|
1572 |
-
""",
|
1573 |
-
unsafe_allow_html=True
|
1574 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|