File size: 21,784 Bytes
232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 0688f0f 64e3877 0688f0f 771a889 0688f0f 771a889 0688f0f 771a889 0688f0f baa1f8d 64e3877 baa1f8d 64e3877 baa1f8d 64e3877 baa1f8d 8d9419f 64e3877 1aa9077 64e3877 8d9419f 64e3877 baa1f8d 64e3877 baa1f8d 64e3877 1aa9077 64e3877 8d9419f 64e3877 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 dea298d 232abe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
# -*- coding:utf-8 -*-
from __future__ import annotations
from typing import TYPE_CHECKING, List
import logging
import json
import os
import requests
import urllib3
from tqdm import tqdm
import colorama
from duckduckgo_search import ddg
import asyncio
import aiohttp
from modules.presets import *
from modules.llama_func import *
from modules.utils import *
from . import shared
from modules.config import retrieve_proxy
# logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s")
if TYPE_CHECKING:
from typing import TypedDict
class DataframeData(TypedDict):
headers: List[str]
data: List[List[str | int | bool]]
initial_prompt = "You are a helpful assistant."
HISTORY_DIR = "history"
TEMPLATES_DIR = "templates"
@shared.state.switching_api_key # 在不开启多账号模式的时候,这个装饰器不会起作用
def get_response(
openai_api_key, system_prompt, history, temperature, top_p, stream, selected_model
):
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}",
}
history = [construct_system(system_prompt), *history]
payload = {
"model": selected_model,
"messages": history, # [{"role": "user", "content": f"{inputs}"}],
"temperature": temperature, # 1.0,
"top_p": top_p, # 1.0,
"n": 1,
"stream": stream,
"presence_penalty": 0,
"frequency_penalty": 0,
}
if stream:
timeout = timeout_streaming
else:
timeout = timeout_all
# 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求
if shared.state.completion_url != COMPLETION_URL:
logging.info(f"使用自定义API URL: {shared.state.completion_url}")
with retrieve_proxy():
response = requests.post(
shared.state.completion_url,
headers=headers,
json=payload,
stream=True,
timeout=timeout,
)
return response
def stream_predict(
openai_api_key,
system_prompt,
history,
inputs,
chatbot,
all_token_counts,
top_p,
temperature,
selected_model,
fake_input=None,
display_append=""
):
def get_return_value():
return chatbot, history, status_text, all_token_counts
logging.info("实时回答模式")
partial_words = ""
counter = 0
status_text = "开始实时传输回答……"
history.append(construct_user(inputs))
history.append(construct_assistant(""))
if fake_input:
chatbot.append((fake_input, ""))
else:
chatbot.append((inputs, ""))
user_token_count = 0
if fake_input is not None:
input_token_count = count_token(construct_user(fake_input))
else:
input_token_count = count_token(construct_user(inputs))
if len(all_token_counts) == 0:
system_prompt_token_count = count_token(construct_system(system_prompt))
user_token_count = (
input_token_count + system_prompt_token_count
)
else:
user_token_count = input_token_count
all_token_counts.append(user_token_count)
logging.info(f"输入token计数: {user_token_count}")
yield get_return_value()
try:
response = get_response(
openai_api_key,
system_prompt,
history,
temperature,
top_p,
True,
selected_model,
)
except requests.exceptions.ConnectTimeout:
status_text = (
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
)
yield get_return_value()
return
except requests.exceptions.ReadTimeout:
status_text = standard_error_msg + read_timeout_prompt + error_retrieve_prompt
yield get_return_value()
return
yield get_return_value()
error_json_str = ""
if fake_input is not None:
history[-2] = construct_user(fake_input)
for chunk in tqdm(response.iter_lines()):
if counter == 0:
counter += 1
continue
counter += 1
# check whether each line is non-empty
if chunk:
chunk = chunk.decode()
chunklength = len(chunk)
try:
chunk = json.loads(chunk[6:])
except json.JSONDecodeError:
logging.info(chunk)
error_json_str += chunk
status_text = f"JSON解析错误。请重置对话。收到的内容: {error_json_str}"
yield get_return_value()
continue
# decode each line as response data is in bytes
if chunklength > 6 and "delta" in chunk["choices"][0]:
finish_reason = chunk["choices"][0]["finish_reason"]
status_text = construct_token_message(all_token_counts)
if finish_reason == "stop":
yield get_return_value()
break
try:
partial_words = (
partial_words + chunk["choices"][0]["delta"]["content"]
)
except KeyError:
status_text = (
standard_error_msg
+ "API回复中找不到内容。很可能是Token计数达到上限了。请重置对话。当前Token计数: "
+ str(sum(all_token_counts))
)
yield get_return_value()
break
history[-1] = construct_assistant(partial_words)
chatbot[-1] = (chatbot[-1][0], partial_words + display_append)
all_token_counts[-1] += 1
yield get_return_value()
def predict_all(
openai_api_key,
system_prompt,
history,
inputs,
chatbot,
all_token_counts,
top_p,
temperature,
selected_model,
fake_input=None,
display_append=""
):
logging.info("一次性回答模式")
history.append(construct_user(inputs))
history.append(construct_assistant(""))
if fake_input:
chatbot.append((fake_input, ""))
else:
chatbot.append((inputs, ""))
if fake_input is not None:
all_token_counts.append(count_token(construct_user(fake_input)))
else:
all_token_counts.append(count_token(construct_user(inputs)))
try:
# logging.info(f"system_prompt:{system_prompt}")
# logging.info(f"history:{history}")
# # 如果能传入index,则此处里获得初筛后的店铺和菜名
response = get_response(
openai_api_key,
system_prompt,
history,
temperature,
top_p,
False,
selected_model,
)
# response = json.loads(response.text)
# logging.info(f"初次响应推荐店铺:{response}")
# response = response["choices"][0]["message"]["content"]
#
# logging.info(f"初次响应推荐店铺:{response}")
# # 将response中的店铺和菜名提取出来
# import re
#
# # text = """
# # 好的,针对您想吃韩式烤肉的需求,我向您推荐以下店铺和菜品:
# #
# # 店铺名称:“青年烤肉店” 推荐菜品:烤牛肉、烤猪肉、烤羊肉
# #
# # 店铺名称:“西西里烤肉店” 推荐菜品:烤牛肉串、烤排骨、烤鸡肉
# #
# # 店铺名称:“韩式烤肉店” 推荐菜品:石锅拌饭、铁板烧、烤牛舌"""
#
# pattern = r'店铺名称:(.+?) 推荐菜品:(.+)。'
#
# results = re.findall(pattern, response)
#
# dicts = {}
# import string
# for result in results:
# dicts[result[0]] = result[1].split('、')
#
# logging.info(f"初筛后的店铺和菜品:{dicts}")
# dishes = []
# for restaurant, dish in dicts.items():
# dishes.extend(dish)
#
# dishes = '、'.join(dishes)
# dishes = "半熟芝士拿铁、白桃半熟芝士拿铁、招牌烤全羊、羊肉串"
# # 将初筛后的店铺和菜品送入构建好的CoT
# prompt_with_ingredient = f"""
# 我需要你推测一些菜可能的原料以及其营养成分,输出格式如下:
# -----------------------
# 菜品名称:[]
# 菜品原料:[原料1,原料2...]
# 营养成分:[成分(含量)]
# -----------------------
# 注意,其中营养成分包括蛋白质、脂肪、碳水化合物、纤维素、维生素等,你可以根据你的知识添加其他成分。营养成分的含量分为无、低、中、高四个等级,需要填在成分后的括号内。
# 以下是需要你推测的菜品名称,不同菜品用顿号隔开:
# -----------------------
# {dishes}
# -----------------------
# 每个菜品按照以上格式分开回复,但是注意,除了以上格式的内容,不要回复其他内容。
# """
# logging.info(f"分析食物中营养成分的prompt构建完成:{prompt_with_ingredient}")
# history_ingredient=[]
# history_ingredient.append(construct_user(prompt_with_ingredient))
# history_ingredient.append(construct_assistant(""))
# logging.info(f"history_ingredient:{history_ingredient}")
# response_ingredient = get_response(
# openai_api_key,
# "你是一个营养分析专家",
# history_ingredient,
# temperature,
# top_p,
# True,
# selected_model,
# )
# response_ingredient = json.loads(response_ingredient.text)
# response_ingredient = response_ingredient["choices"][0]["message"]["content"]
# logging.info(f"得到食物中的营养成分:{response_ingredient}")
# prompt_rec = f"""
# 以下是一些菜品名称和所属的店铺,我需要你根据我的需求从其中推荐一家店铺的一种或多种菜品,并给出推荐的理由。我的需求为:我有糖尿病,而且今天不想吃太油腻的食物。
# -----------------------
# {response_ingredient}
# -----------------------
# """
# history_rec = []
# history_rec.append(construct_user(prompt_rec))
# history_rec.append(construct_assistant(""))
# logging.info(f"history_rec:{history_rec}")
# response = get_response(
# openai_api_key,
# "你是一个美食推荐家",
# history_rec,
# temperature,
# top_p,
# True,
# selected_model,
# )
except requests.exceptions.ConnectTimeout:
status_text = (
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
)
return chatbot, history, status_text, all_token_counts
except requests.exceptions.ProxyError:
status_text = standard_error_msg + proxy_error_prompt + error_retrieve_prompt
return chatbot, history, status_text, all_token_counts
except requests.exceptions.SSLError:
status_text = standard_error_msg + ssl_error_prompt + error_retrieve_prompt
return chatbot, history, status_text, all_token_counts
response = json.loads(response.text)
if fake_input is not None:
history[-2] = construct_user(fake_input)
try:
content = response["choices"][0]["message"]["content"]
history[-1] = construct_assistant(content)
chatbot[-1] = (chatbot[-1][0], content + display_append)
total_token_count = response["usage"]["total_tokens"]
if fake_input is not None:
all_token_counts[-1] += count_token(construct_assistant(content))
else:
all_token_counts[-1] = total_token_count - sum(all_token_counts)
status_text = construct_token_message(total_token_count)
return chatbot, history, status_text, all_token_counts
except KeyError:
status_text = standard_error_msg + str(response)
return chatbot, history, status_text, all_token_counts
def predict(
openai_api_key,
system_prompt,
history,
inputs,
chatbot,
all_token_counts,
top_p,
temperature,
stream=False,
selected_model=MODELS[0],
use_websearch=False,
files=None,
reply_language="中文",
should_check_token_count=True,
): # repetition_penalty, top_k
# CHANGE
# files = [{'name': 'database/cuc-pure.txt'}]
# CHANGE
from llama_index.indices.vector_store.base_query import GPTVectorStoreIndexQuery
from llama_index.indices.query.schema import QueryBundle
from langchain.llms import OpenAIChat
logging.info("输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL)
if should_check_token_count:
yield chatbot + [(inputs, "")], history, "开始生成回答……", all_token_counts
if reply_language == "跟随问题语言(不稳定)":
reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch."
old_inputs = None
display_reference = []
limited_context = False
if files:
limited_context = True
old_inputs = inputs
msg = "加载索引中……(这可能需要几分钟)"
logging.info(msg)
yield chatbot + [(inputs, "")], history, msg, all_token_counts
index = construct_index(openai_api_key, file_src=files)
msg = "索引构建完成,获取回答中……"
logging.info(msg)
yield chatbot + [(inputs, "")], history, msg, all_token_counts
with retrieve_proxy():
llm_predictor = LLMPredictor(llm=OpenAIChat(temperature=0, model_name=selected_model))
prompt_helper = PromptHelper(max_input_size=4096, num_output=5, max_chunk_overlap=20, chunk_size_limit=600)
from llama_index import ServiceContext
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
query_object = GPTVectorStoreIndexQuery(index.index_struct, service_context=service_context,
similarity_top_k=5, vector_store=index._vector_store,
docstore=index._docstore)
query_bundle = QueryBundle(inputs)
nodes = query_object.retrieve(query_bundle)
reference_results = [n.node.text for n in nodes]
reference_results = add_source_numbers(reference_results, use_source=False)
display_reference = add_details(reference_results)
display_reference = "\n\n" + "".join(display_reference)
inputs = (
replace_today(PROMPT_TEMPLATE)
.replace("{query_str}", inputs)
.replace("{context_str}", "\n\n".join(reference_results))
.replace("{reply_language}", reply_language)
)
elif use_websearch:
limited_context = True
search_results = ddg(inputs, max_results=5)
old_inputs = inputs
reference_results = []
for idx, result in enumerate(search_results):
logging.info(f"搜索结果{idx + 1}:{result}")
domain_name = urllib3.util.parse_url(result["href"]).host
reference_results.append([result["body"], result["href"]])
display_reference.append(f"{idx + 1}. [{domain_name}]({result['href']})\n")
reference_results = add_source_numbers(reference_results)
display_reference = "\n\n" + "".join(display_reference)
inputs = (
replace_today(WEBSEARCH_PTOMPT_TEMPLATE)
.replace("{query}", inputs)
.replace("{web_results}", "\n\n".join(reference_results))
.replace("{reply_language}", reply_language)
)
else:
display_reference = ""
if len(openai_api_key) == 0 and not shared.state.multi_api_key:
status_text = standard_error_msg + no_apikey_msg
logging.info(status_text)
chatbot.append((inputs, ""))
if len(history) == 0:
history.append(construct_user(inputs))
history.append("")
all_token_counts.append(0)
else:
history[-2] = construct_user(inputs)
yield chatbot + [(inputs, "")], history, status_text, all_token_counts
return
elif len(inputs.strip()) == 0:
status_text = standard_error_msg + no_input_msg
logging.info(status_text)
yield chatbot + [(inputs, "")], history, status_text, all_token_counts
return
if stream:
logging.info("使用流式传输")
iter = stream_predict(
openai_api_key,
system_prompt,
history,
inputs,
chatbot,
all_token_counts,
top_p,
temperature,
selected_model,
fake_input=old_inputs,
display_append=display_reference
)
for chatbot, history, status_text, all_token_counts in iter:
if shared.state.interrupted:
shared.state.recover()
return
yield chatbot, history, status_text, all_token_counts
else:
logging.info("不使用流式传输")
chatbot, history, status_text, all_token_counts = predict_all(
openai_api_key,
system_prompt,
history,
inputs,
chatbot,
all_token_counts,
top_p,
temperature,
selected_model,
fake_input=old_inputs,
display_append=display_reference
)
yield chatbot, history, status_text, all_token_counts
logging.info(f"传输完毕。当前token计数为{all_token_counts}")
if len(history) > 1 and history[-1]["content"] != inputs:
logging.info(
"回答为:"
+ colorama.Fore.BLUE
+ f"{history[-1]['content']}"
+ colorama.Style.RESET_ALL
)
if limited_context:
history = history[-4:]
all_token_counts = all_token_counts[-2:]
yield chatbot, history, status_text, all_token_counts
if stream:
max_token = MODEL_SOFT_TOKEN_LIMIT[selected_model]["streaming"]
else:
max_token = MODEL_SOFT_TOKEN_LIMIT[selected_model]["all"]
if sum(all_token_counts) > max_token and should_check_token_count:
print(all_token_counts)
count = 0
while sum(all_token_counts) > max_token - 500 and sum(all_token_counts) > 0:
count += 1
del all_token_counts[0]
del history[:2]
logging.info(status_text)
status_text = f"为了防止token超限,模型忘记了早期的 {count} 轮对话"
yield chatbot, history, status_text, all_token_counts
def retry(
openai_api_key,
system_prompt,
history,
chatbot,
token_count,
top_p,
temperature,
stream=False,
selected_model=MODELS[0],
reply_language="中文",
):
logging.info("重试中……")
if len(history) == 0:
yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count
return
history.pop()
inputs = history.pop()["content"]
token_count.pop()
iter = predict(
openai_api_key,
system_prompt,
history,
inputs,
chatbot,
token_count,
top_p,
temperature,
stream=stream,
selected_model=selected_model,
reply_language=reply_language,
)
logging.info("重试中……")
for x in iter:
yield x
logging.info("重试完毕")
def reduce_token_size(
openai_api_key,
system_prompt,
history,
chatbot,
token_count,
top_p,
temperature,
max_token_count,
selected_model=MODELS[0],
reply_language="中文",
):
logging.info("开始减少token数量……")
iter = predict(
openai_api_key,
system_prompt,
history,
summarize_prompt,
chatbot,
token_count,
top_p,
temperature,
selected_model=selected_model,
should_check_token_count=False,
reply_language=reply_language,
)
logging.info(f"chatbot: {chatbot}")
flag = False
for chatbot, history, status_text, previous_token_count in iter:
num_chat = find_n(previous_token_count, max_token_count)
logging.info(f"previous_token_count: {previous_token_count}, keeping {num_chat} chats")
if flag:
chatbot = chatbot[:-1]
flag = True
history = history[-2 * num_chat:] if num_chat > 0 else []
token_count = previous_token_count[-num_chat:] if num_chat > 0 else []
msg = f"保留了最近{num_chat}轮对话"
yield chatbot, history, msg + "," + construct_token_message(
token_count if len(token_count) > 0 else [0],
), token_count
logging.info(msg)
logging.info("减少token数量完毕")
|