|
import streamlit as st |
|
from transformers import pipeline |
|
import time |
|
|
|
def sentiment(summary): |
|
pipe = pipeline("text-classification", model="WillWEI0103/CustomModel_finance_sentiment_analytics") |
|
label = pipe(summary)[0]['label'] |
|
score = pipe(summary)[0]['score'] |
|
return label,score |
|
|
|
|
|
def main(): |
|
dicts={"bullish":'Positive📈',"bearish":'Negative📉','neutral':"Neutral😐"} |
|
st.header("Summarize Your Finance News and Analyze Sentiment📰") |
|
text=st.text_input('Input your Finance news(Max lenth<=3000): ',None,max_chars=3000) |
|
|
|
if st.button('Conduct'): |
|
st.text_area('Your Finance News: ',text,height=100) |
|
|
|
|
|
with st.status("Processing Finance News Summarization...") as status: |
|
text_summarize=pipeline("summarization", model="nickmuchi/fb-bart-large-finetuned-trade-the-event-finance-summarizer") |
|
summary=text_summarize(text)[0]['summary_text'] |
|
status.update(label="Summarization Completed", state="complete", expanded=False) |
|
st.text_area('Your Finance News Summary',summary,height=30) |
|
|
|
|
|
with st.status("Processing Sentiment Analytics..") as status: |
|
label,score = sentiment(summary) |
|
label=dicts[label] |
|
status.update(label="Sentiment Analytics Completed", state="complete", expanded=False) |
|
st.text('The Sentiment of the Finance News is: ') |
|
st.text(label) |
|
st.text('The Sentiment Score: ') |
|
st.text(round(score,3)) |
|
|
|
if __name__ == "__main__": |
|
main() |