Spaces:
Runtime error
Runtime error
File size: 2,710 Bytes
5ae9a2d 1fae8fd 229809b 5af7c4c 270f27d efb958b 5af7c4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import os
os.system('pip install torch')
os.system('pip install transformers')
os.system('pip install scipy')
os.system('pip install gradio')
import numpy as np
from scipy.special import softmax
import gradio as gr
from transformers import (
AutoTokenizer,
AutoConfig,
AutoModelForSequenceClassification,
TFAutoModelForSequenceClassification)
# Define the model path where the pre-trained model is saved on the Hugging Face model hub
model_path = "Winnie-Kay/Finetuned_bert_model"
# Initialize the tokenizer for the pre-trained model
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Load the configuration for the pre-trained model
config = AutoConfig.from_pretrained(model_path)
# Load the pre-trained model
model = AutoModelForSequenceClassification.from_pretrained(model_path)
# Define a function to preprocess the text data
def preprocess(text):
new_text = []
# Replace user mentions with '@user'
for t in text.split(" "):
t = '@user' if t.startswith('@') and len(t) > 1 else t
# Replace links with 'http'
t = 'http' if t.startswith('http') else t
new_text.append(t)
# Join the preprocessed text
return " ".join(new_text)
# Define a function to perform sentiment analysis on the input text
def sentiment_analysis(text):
# Preprocess the input text
text = preprocess(text)
# Tokenize the input text using the pre-trained tokenizer
encoded_input = tokenizer(text, return_tensors='pt')
# Feed the tokenized input to the pre-trained model and obtain output
output = model(**encoded_input)
# Obtain the prediction scores for the output
scores_ = output[0][0].detach().numpy()
# Apply softmax activation function to obtain probability distribution over the labels
scores_ = softmax(scores_)
# Format the output dictionary with the predicted scores
labels = ['Negative', 'Neutral', 'Positive']
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
# Return the scores
return scores
# Define a Gradio interface to interact with the model
demo = gr.Interface(
fn=sentiment_analysis, # Function to perform sentiment analysis
inputs=gr.Textbox(placeholder="Write your tweet here..."), # Text input field
outputs="label", # Output type (here, we only display the label with the highest score)
interpretation="default", # Interpretation mode
examples=[["Have Fun with it...will be updated soon!"]],# Example input(s) to display on the interface
image=gr.Image("https://www.reputationx.com/hubfs/what-is-sentiment-analysis-cover.jpg"),
css= "body {background-color: black}"
)
# Launch the Gradio interface
demo.launch()
|