Winnie-Kay's picture
Create app.py
5af7c4c
raw
history blame
2.19 kB
# Define the model path where the pre-trained model is saved on the Hugging Face model hub
model_path = "Winnie-Kay/Finetuned_bert_model"
# Initialize the tokenizer for the pre-trained model
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Load the configuration for the pre-trained model
config = AutoConfig.from_pretrained(model_path)
# Load the pre-trained model
model = AutoModelForSequenceClassification.from_pretrained(model_path)
# Define a function to preprocess the text data
def preprocess(text):
new_text = []
# Replace user mentions with '@user'
for t in text.split(" "):
t = '@user' if t.startswith('@') and len(t) > 1 else t
# Replace links with 'http'
t = 'http' if t.startswith('http') else t
new_text.append(t)
# Join the preprocessed text
return " ".join(new_text)
# Define a function to perform sentiment analysis on the input text
def sentiment_analysis(text):
# Preprocess the input text
text = preprocess(text)
# Tokenize the input text using the pre-trained tokenizer
encoded_input = tokenizer(text, return_tensors='pt')
# Feed the tokenized input to the pre-trained model and obtain output
output = model(**encoded_input)
# Obtain the prediction scores for the output
scores_ = output[0][0].detach().numpy()
# Apply softmax activation function to obtain probability distribution over the labels
scores_ = softmax(scores_)
# Format the output dictionary with the predicted scores
labels = ['Negative', 'Neutral', 'Positive']
scores = {l:float(s) for (l,s) in zip(labels, scores_) }
# Return the scores
return scores
# Define a Gradio interface to interact with the model
demo = gr.Interface(
fn=sentiment_analysis, # Function to perform sentiment analysis
inputs=gr.Textbox(placeholder="Write your tweet here..."), # Text input field
outputs="label", # Output type (here, we only display the label with the highest score)
interpretation="default", # Interpretation mode
examples=[["This is wonderful!"]]) # Example input(s) to display on the interface
# Launch the Gradio interface
demo.launch()