Wmcs91's picture
Duplicate from shi-labs/Versatile-Diffusion
fb53ec8
import torch
import torch.distributed as dist
import os
import os.path as osp
import numpy as np
import copy
import json
from ..log_service import print_log
def singleton(class_):
instances = {}
def getinstance(*args, **kwargs):
if class_ not in instances:
instances[class_] = class_(*args, **kwargs)
return instances[class_]
return getinstance
@singleton
class get_evaluator(object):
def __init__(self):
self.evaluator = {}
def register(self, evaf, name):
self.evaluator[name] = evaf
def __call__(self, pipeline_cfg=None):
if pipeline_cfg is None:
from . import eva_null
return self.evaluator['null']()
if not isinstance(pipeline_cfg, list):
t = pipeline_cfg.type
if t == 'miou':
from . import eva_miou
if t == 'psnr':
from . import eva_psnr
if t == 'ssim':
from . import eva_ssim
if t == 'lpips':
from . import eva_lpips
if t == 'fid':
from . import eva_fid
return self.evaluator[t](**pipeline_cfg.args)
evaluator = []
for ci in pipeline_cfg:
t = ci.type
if t == 'miou':
from . import eva_miou
if t == 'psnr':
from . import eva_psnr
if t == 'ssim':
from . import eva_ssim
if t == 'lpips':
from . import eva_lpips
if t == 'fid':
from . import eva_fid
evaluator.append(
self.evaluator[t](**ci.args))
if len(evaluator) == 0:
return None
else:
return compose(evaluator)
def register(name):
def wrapper(class_):
get_evaluator().register(class_, name)
return class_
return wrapper
class base_evaluator(object):
def __init__(self,
**args):
'''
Args:
sample_n, int,
the total number of sample. used in
distributed sync
'''
if not dist.is_available():
raise ValueError
self.world_size = dist.get_world_size()
self.rank = dist.get_rank()
self.sample_n = None
self.final = {}
def sync(self, data):
"""
Args:
data: any,
the data needs to be broadcasted
"""
if data is None:
return None
if isinstance(data, tuple):
data = list(data)
if isinstance(data, list):
data_list = []
for datai in data:
data_list.append(self.sync(datai))
data = [[*i] for i in zip(*data_list)]
return data
data = [
self.sync_(data, ranki)
for ranki in range(self.world_size)
]
return data
def sync_(self, data, rank):
t = type(data)
is_broadcast = rank == self.rank
if t is np.ndarray:
dtrans = data
dt = data.dtype
if dt in [
int,
np.bool,
np.uint8,
np.int8,
np.int16,
np.int32,
np.int64,]:
dtt = torch.int64
elif dt in [
float,
np.float16,
np.float32,
np.float64,]:
dtt = torch.float64
elif t is str:
dtrans = np.array(
[ord(c) for c in data],
dtype = np.int64
)
dt = np.int64
dtt = torch.int64
else:
raise ValueError
if is_broadcast:
n = len(dtrans.shape)
n = torch.tensor(n).long()
n = n.to(self.rank)
dist.broadcast(n, src=rank)
n = list(dtrans.shape)
n = torch.tensor(n).long()
n = n.to(self.rank)
dist.broadcast(n, src=rank)
n = torch.tensor(dtrans, dtype=dtt)
n = n.to(self.rank)
dist.broadcast(n, src=rank)
return data
n = torch.tensor(0).long()
n = n.to(self.rank)
dist.broadcast(n, src=rank)
n = n.item()
n = torch.zeros(n).long()
n = n.to(self.rank)
dist.broadcast(n, src=rank)
n = list(n.to('cpu').numpy())
n = torch.zeros(n, dtype=dtt)
n = n.to(self.rank)
dist.broadcast(n, src=rank)
n = n.to('cpu').numpy().astype(dt)
if t is np.ndarray:
return n
elif t is str:
n = ''.join([chr(c) for c in n])
return n
def zipzap_arrange(self, data):
'''
Order the data so it range like this:
input [[0, 2, 4, 6], [1, 3, 5, 7]] -> output [0, 1, 2, 3, 4, 5, ...]
'''
if isinstance(data[0], list):
data_new = []
maxlen = max([len(i) for i in data])
totlen = sum([len(i) for i in data])
cnt = 0
for idx in range(maxlen):
for datai in data:
data_new += [datai[idx]]
cnt += 1
if cnt >= totlen:
break
return data_new
elif isinstance(data[0], np.ndarray):
maxlen = max([i.shape[0] for i in data])
totlen = sum([i.shape[0] for i in data])
datai_shape = data[0].shape[1:]
data = [
np.concatenate(datai, np.zeros(maxlen-datai.shape[0], *datai_shape), axis=0)
if datai.shape[0] < maxlen else datai
for datai in data
] # even the array
data = np.stack(data, axis=1).reshape(-1, *datai_shape)
data = data[:totlen]
return data
else:
raise NotImplementedError
def add_batch(self, **args):
raise NotImplementedError
def set_sample_n(self, sample_n):
self.sample_n = sample_n
def compute(self):
raise NotImplementedError
# Function needed in training to judge which
# evaluated number is better
def isbetter(self, old, new):
return new>old
def one_line_summary(self):
print_log('Evaluator display')
def save(self, path):
if not osp.exists(path):
os.makedirs(path)
ofile = osp.join(path, 'result.json')
with open(ofile, 'w') as f:
json.dump(self.final, f, indent=4)
def clear_data(self):
raise NotImplementedError
class compose(object):
def __init__(self, pipeline):
self.pipeline = pipeline
self.sample_n = None
self.final = {}
def add_batch(self, *args, **kwargs):
for pi in self.pipeline:
pi.add_batch(*args, **kwargs)
def set_sample_n(self, sample_n):
self.sample_n = sample_n
for pi in self.pipeline:
pi.set_sample_n(sample_n)
def compute(self):
rv = {}
for pi in self.pipeline:
rv[pi.symbol] = pi.compute()
self.final[pi.symbol] = pi.final
return rv
def isbetter(self, old, new):
check = 0
for pi in self.pipeline:
if pi.isbetter(old, new):
check+=1
if check/len(self.pipeline)>0.5:
return True
else:
return False
def one_line_summary(self):
for pi in self.pipeline:
pi.one_line_summary()
def save(self, path):
if not osp.exists(path):
os.makedirs(path)
ofile = osp.join(path, 'result.json')
with open(ofile, 'w') as f:
json.dump(self.final, f, indent=4)
def clear_data(self):
for pi in self.pipeline:
pi.clear_data()