Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyleft 2019 project LXRT. | |
import argparse | |
import random | |
import numpy as np | |
import torch | |
def get_optimizer(optim): | |
# Bind the optimizer | |
if optim == 'rms': | |
print("Optimizer: Using RMSProp") | |
optimizer = torch.optim.RMSprop | |
elif optim == 'adam': | |
print("Optimizer: Using Adam") | |
optimizer = torch.optim.Adam | |
elif optim == 'adamax': | |
print("Optimizer: Using Adamax") | |
optimizer = torch.optim.Adamax | |
elif optim == 'sgd': | |
print("Optimizer: sgd") | |
optimizer = torch.optim.SGD | |
elif 'bert' in optim: | |
optimizer = 'bert' # The bert optimizer will be bind later. | |
else: | |
assert False, "Please add your optimizer %s in the list." % optim | |
return optimizer | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
# Data Splits | |
parser.add_argument("--train", default='train') | |
parser.add_argument("--valid", default='valid') | |
parser.add_argument("--test", default=None) | |
# Training Hyper-parameters | |
parser.add_argument('--batchSize', dest='batch_size', type=int, default=256) | |
parser.add_argument('--optim', default='bert') | |
parser.add_argument('--lr', type=float, default=1e-4) | |
parser.add_argument('--epochs', type=int, default=10) | |
parser.add_argument('--dropout', type=float, default=0.1) | |
parser.add_argument('--seed', type=int, default=9595, help='random seed') | |
# Debugging | |
parser.add_argument('--output', type=str, default='snap/test') | |
parser.add_argument("--fast", action='store_const', default=False, const=True) | |
parser.add_argument("--tiny", action='store_const', default=False, const=True) | |
parser.add_argument("--tqdm", action='store_const', default=False, const=True) | |
# Model Loading | |
parser.add_argument('--load', type=str, default=None, | |
help='Load the model (usually the fine-tuned model).') | |
parser.add_argument('--loadLXMERT', dest='load_lxmert', type=str, default=None, | |
help='Load the pre-trained lxmert model.') | |
parser.add_argument('--loadLXMERTQA', dest='load_lxmert_qa', type=str, default=None, | |
help='Load the pre-trained lxmert model with QA answer head.') | |
parser.add_argument("--fromScratch", dest='from_scratch', action='store_const', default=False, const=True, | |
help='If none of the --load, --loadLXMERT, --loadLXMERTQA is set, ' | |
'the model would be trained from scratch. If --fromScratch is' | |
' not specified, the model would load BERT-pre-trained weights by' | |
' default. ') | |
# Optimization | |
parser.add_argument("--mceLoss", dest='mce_loss', action='store_const', default=False, const=True) | |
# LXRT Model Config | |
# Note: LXRT = L, X, R (three encoders), Transformer | |
parser.add_argument("--llayers", default=9, type=int, help='Number of Language layers') | |
parser.add_argument("--xlayers", default=5, type=int, help='Number of CROSS-modality layers.') | |
parser.add_argument("--rlayers", default=5, type=int, help='Number of object Relationship layers.') | |
# lxmert Pre-training Config | |
parser.add_argument("--taskMatched", dest='task_matched', action='store_const', default=False, const=True) | |
parser.add_argument("--taskMaskLM", dest='task_mask_lm', action='store_const', default=False, const=True) | |
parser.add_argument("--taskObjPredict", dest='task_obj_predict', action='store_const', default=False, const=True) | |
parser.add_argument("--taskQA", dest='task_qa', action='store_const', default=False, const=True) | |
parser.add_argument("--visualLosses", dest='visual_losses', default='obj,attr,feat', type=str) | |
parser.add_argument("--qaSets", dest='qa_sets', default=None, type=str) | |
parser.add_argument("--wordMaskRate", dest='word_mask_rate', default=0.15, type=float) | |
parser.add_argument("--objMaskRate", dest='obj_mask_rate', default=0.15, type=float) | |
# Training configuration | |
parser.add_argument("--multiGPU", action='store_const', default=False, const=True) | |
parser.add_argument("--numWorkers", dest='num_workers', default=0) | |
# perturbation configuration | |
parser.add_argument('--method', type=str, | |
default='ours_no_lrp', | |
choices=['ours_with_lrp', 'rollout', 'partial_lrp', 'transformer_att', | |
'raw_attn', 'attn_gradcam', 'ours_with_lrp_no_normalization', 'ours_no_lrp', | |
'ours_no_lrp_no_norm', 'ablation_no_aggregation', 'ablation_no_self_in_10'], | |
help='') | |
parser.add_argument('--num-samples', type=int, | |
default=10000, | |
help='') | |
parser.add_argument('--is-positive-pert', type=bool, | |
default=False, | |
help='') | |
parser.add_argument('--is-text-pert', type=bool, | |
default=False, | |
help='') | |
parser.add_argument('--COCO_path', type=str, | |
default='', | |
help='path to COCO 2014 validation set') | |
# Parse the arguments. | |
args = parser.parse_args() | |
# Bind optimizer class. | |
args.optimizer = get_optimizer(args.optim) | |
# Set seeds | |
torch.manual_seed(args.seed) | |
random.seed(args.seed) | |
np.random.seed(args.seed) | |
return args | |
args = parse_args() | |