XS-dev
trial
5657307
|
raw
history blame
1.63 kB
metadata
title: Exact Match
emoji: 🤗
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 3.0.2
app_file: app.py
pinned: false
tags:
  - evaluate
  - comparison
description: >-
  Returns the rate at which the predictions of one model exactly match those of
  another model.

Comparison Card for Exact Match

Comparison description

Given two model predictions the exact match score is 1 if they are the exact same, and is 0 otherwise. The overall exact match score is the average.

  • Example 1: The exact match score if prediction 1.0 is [0, 1] is 0, given prediction 2 is [0, 1].
  • Example 2: The exact match score if prediction 0.0 is [0, 1] is 0, given prediction 2 is [1, 0].
  • Example 3: The exact match score if prediction 0.5 is [0, 1] is 0, given prediction 2 is [1, 1].

How to use

At minimum, this metric takes as input predictions and references:

>>> exact_match = evaluate.load("exact_match", module_type="comparison")
>>> results = exact_match.compute(predictions1=[0, 1, 1], predictions2=[1, 1, 1])
>>> print(results)
{'exact_match': 0.66}

Output values

Returns a float between 0.0 and 1.0 inclusive.

Examples

>>> exact_match = evaluate.load("exact_match", module_type="comparison")
>>> results = exact_match.compute(predictions1=[0, 0, 0], predictions2=[1, 1, 1])
>>> print(results)
{'exact_match': 1.0}
>>> exact_match = evaluate.load("exact_match", module_type="comparison")
>>> results = exact_match.compute(predictions1=[0, 1, 1], predictions2=[1, 1, 1])
>>> print(results)
{'exact_match': 0.66}

Limitations and bias

Citations