Spaces:
Sleeping
Sleeping
title: Exact Match | |
emoji: π€ | |
colorFrom: blue | |
colorTo: green | |
sdk: gradio | |
sdk_version: 3.0.2 | |
app_file: app.py | |
pinned: false | |
tags: | |
- evaluate | |
- comparison | |
description: >- | |
Returns the rate at which the predictions of one model exactly match those of another model. | |
# Comparison Card for Exact Match | |
## Comparison description | |
Given two model predictions the exact match score is 1 if they are the exact same, and is 0 otherwise. The overall exact match score is the average. | |
- **Example 1**: The exact match score if prediction 1.0 is [0, 1] is 0, given prediction 2 is [0, 1]. | |
- **Example 2**: The exact match score if prediction 0.0 is [0, 1] is 0, given prediction 2 is [1, 0]. | |
- **Example 3**: The exact match score if prediction 0.5 is [0, 1] is 0, given prediction 2 is [1, 1]. | |
## How to use | |
At minimum, this metric takes as input predictions and references: | |
```python | |
>>> exact_match = evaluate.load("exact_match", module_type="comparison") | |
>>> results = exact_match.compute(predictions1=[0, 1, 1], predictions2=[1, 1, 1]) | |
>>> print(results) | |
{'exact_match': 0.66} | |
``` | |
## Output values | |
Returns a float between 0.0 and 1.0 inclusive. | |
## Examples | |
```python | |
>>> exact_match = evaluate.load("exact_match", module_type="comparison") | |
>>> results = exact_match.compute(predictions1=[0, 0, 0], predictions2=[1, 1, 1]) | |
>>> print(results) | |
{'exact_match': 1.0} | |
``` | |
```python | |
>>> exact_match = evaluate.load("exact_match", module_type="comparison") | |
>>> results = exact_match.compute(predictions1=[0, 1, 1], predictions2=[1, 1, 1]) | |
>>> print(results) | |
{'exact_match': 0.66} | |
``` | |
## Limitations and bias | |
## Citations | |