Spaces:
Sleeping
A newer version of the Gradio SDK is available:
5.13.1
title: SacreBLEU
emoji: 🤗
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 3.19.1
app_file: app.py
pinned: false
tags:
- evaluate
- metric
description: >-
SacreBLEU provides hassle-free computation of shareable, comparable, and
reproducible BLEU scores. Inspired by Rico Sennrich's `multi-bleu-detok.perl`,
it produces the official WMT scores but works with plain text. It also knows
all the standard test sets and handles downloading, processing, and
tokenization for you.
See the [README.md] file at https://github.com/mjpost/sacreBLEU for more
information.
Metric Card for SacreBLEU
Metric Description
SacreBLEU provides hassle-free computation of shareable, comparable, and reproducible BLEU scores. Inspired by Rico Sennrich's multi-bleu-detok.perl
, it produces the official Workshop on Machine Translation (WMT) scores but works with plain text. It also knows all the standard test sets and handles downloading, processing, and tokenization.
See the [README.md] file at https://github.com/mjpost/sacreBLEU for more information.
How to Use
This metric takes a set of predictions and a set of references as input, along with various optional parameters.
>>> predictions = ["hello there general kenobi", "foo bar foobar"]
>>> references = [["hello there general kenobi", "hello there !"],
... ["foo bar foobar", "foo bar foobar"]]
>>> sacrebleu = evaluate.load("sacrebleu")
>>> results = sacrebleu.compute(predictions=predictions,
... references=references)
>>> print(list(results.keys()))
['score', 'counts', 'totals', 'precisions', 'bp', 'sys_len', 'ref_len']
>>> print(round(results["score"], 1))
100.0
Inputs
predictions
(list
ofstr
): list of translations to score. Each translation should be tokenized into a list of tokens.references
(list
oflist
ofstr
): A list of lists of references. The contents of the first sub-list are the references for the first prediction, the contents of the second sub-list are for the second prediction, etc. Note that there must be the same number of references for each prediction (i.e. all sub-lists must be of the same length).smooth_method
(str
): The smoothing method to use, defaults to'exp'
. Possible values are:'none'
: no smoothing'floor'
: increment zero counts'add-k'
: increment num/denom by k for n>1'exp'
: exponential decay
smooth_value
(float
): The smoothing value. Only valid whensmooth_method='floor'
(in which casesmooth_value
defaults to0.1
) orsmooth_method='add-k'
(in which casesmooth_value
defaults to1
).tokenize
(str
): Tokenization method to use for BLEU. If not provided, defaults to'zh'
for Chinese,'ja-mecab'
for Japanese and'13a'
(mteval) otherwise. Possible values are:'none'
: No tokenization.'zh'
: Chinese tokenization.'13a'
: mimics themteval-v13a
script from Moses.'intl'
: International tokenization, mimics themteval-v14
script from Moses'char'
: Language-agnostic character-level tokenization.'ja-mecab'
: Japanese tokenization. Uses the MeCab tokenizer.
lowercase
(bool
): IfTrue
, lowercases the input, enabling case-insensitivity. Defaults toFalse
.force
(bool
): IfTrue
, insists that your tokenized input is actually detokenized. Defaults toFalse
.use_effective_order
(bool
): IfTrue
, stops including n-gram orders for which precision is 0. This should beTrue
, if sentence-level BLEU will be computed. Defaults toFalse
.
Output Values
score
: BLEU scorecounts
: Countstotals
: Totalsprecisions
: Precisionsbp
: Brevity penaltysys_len
: predictions lengthref_len
: reference length
The output is in the following format:
{'score': 39.76353643835252, 'counts': [6, 4, 2, 1], 'totals': [10, 8, 6, 4], 'precisions': [60.0, 50.0, 33.333333333333336, 25.0], 'bp': 1.0, 'sys_len': 10, 'ref_len': 7}
The score can take any value between 0.0
and 100.0
, inclusive.
Values from Popular Papers
Examples
>>> predictions = ["hello there general kenobi",
... "on our way to ankh morpork"]
>>> references = [["hello there general kenobi", "hello there !"],
... ["goodbye ankh morpork", "ankh morpork"]]
>>> sacrebleu = evaluate.load("sacrebleu")
>>> results = sacrebleu.compute(predictions=predictions,
... references=references)
>>> print(list(results.keys()))
['score', 'counts', 'totals', 'precisions', 'bp', 'sys_len', 'ref_len']
>>> print(round(results["score"], 1))
39.8
Limitations and Bias
Because what this metric calculates is BLEU scores, it has the same limitations as that metric, except that sacreBLEU is more easily reproducible.
Citation
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
Further References
- See the sacreBLEU README.md file for more information.