Spaces:
Running
Running
File size: 18,571 Bytes
93bde9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import functools
from typing import Tuple, Optional
##########################
#### from pytorch3d ####
##########################
def _axis_angle_rotation(axis: str, angle):
"""
Return the rotation matrices for one of the rotations about an axis
of which Euler angles describe, for each value of the angle given.
Args:
axis: Axis label "X" or "Y or "Z".
angle: any shape tensor of Euler angles in radians
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
cos = torch.cos(angle)
sin = torch.sin(angle)
one = torch.ones_like(angle)
zero = torch.zeros_like(angle)
if axis == "X":
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
if axis == "Y":
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
if axis == "Z":
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))
def euler_angles_to_matrix(euler_angles, convention: str):
"""
Convert rotations given as Euler angles in radians to rotation matrices.
Args:
euler_angles: Euler angles in radians as tensor of shape (..., 3).
convention: Convention string of three uppercase letters from
{"X", "Y", and "Z"}.
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3:
raise ValueError("Invalid input euler angles.")
if len(convention) != 3:
raise ValueError("Convention must have 3 letters.")
if convention[1] in (convention[0], convention[2]):
raise ValueError(f"Invalid convention {convention}.")
for letter in convention:
if letter not in ("X", "Y", "Z"):
raise ValueError(f"Invalid letter {letter} in convention string.")
matrices = map(_axis_angle_rotation, convention, torch.unbind(euler_angles, -1))
return functools.reduce(torch.matmul, matrices)
###########################
#### from pytorchgemotry ####
###########################
def get_perspective_transform(src, dst):
r"""Calculates a perspective transform from four pairs of the corresponding
points.
The function calculates the matrix of a perspective transform so that:
.. math ::
\begin{bmatrix}
t_{i}x_{i}^{'} \\
t_{i}y_{i}^{'} \\
t_{i} \\
\end{bmatrix}
=
\textbf{map_matrix} \cdot
\begin{bmatrix}
x_{i} \\
y_{i} \\
1 \\
\end{bmatrix}
where
.. math ::
dst(i) = (x_{i}^{'},y_{i}^{'}), src(i) = (x_{i}, y_{i}), i = 0,1,2,3
Args:
src (Tensor): coordinates of quadrangle vertices in the source image.
dst (Tensor): coordinates of the corresponding quadrangle vertices in
the destination image.
Returns:
Tensor: the perspective transformation.
Shape:
- Input: :math:`(B, 4, 2)` and :math:`(B, 4, 2)`
- Output: :math:`(B, 3, 3)`
"""
if not torch.is_tensor(src):
raise TypeError("Input type is not a torch.Tensor. Got {}"
.format(type(src)))
if not torch.is_tensor(dst):
raise TypeError("Input type is not a torch.Tensor. Got {}"
.format(type(dst)))
if not src.shape[-2:] == (4, 2):
raise ValueError("Inputs must be a Bx4x2 tensor. Got {}"
.format(src.shape))
if not src.shape == dst.shape:
raise ValueError("Inputs must have the same shape. Got {}"
.format(dst.shape))
if not (src.shape[0] == dst.shape[0]):
raise ValueError("Inputs must have same batch size dimension. Got {}"
.format(src.shape, dst.shape))
def ax(p, q):
ones = torch.ones_like(p)[..., 0:1]
zeros = torch.zeros_like(p)[..., 0:1]
return torch.cat(
[p[:, 0:1], p[:, 1:2], ones, zeros, zeros, zeros,
-p[:, 0:1] * q[:, 0:1], -p[:, 1:2] * q[:, 0:1]
], dim=1)
def ay(p, q):
ones = torch.ones_like(p)[..., 0:1]
zeros = torch.zeros_like(p)[..., 0:1]
return torch.cat(
[zeros, zeros, zeros, p[:, 0:1], p[:, 1:2], ones,
-p[:, 0:1] * q[:, 1:2], -p[:, 1:2] * q[:, 1:2]], dim=1)
# we build matrix A by using only 4 point correspondence. The linear
# system is solved with the least square method, so here
# we could even pass more correspondence
p = []
p.append(ax(src[:, 0], dst[:, 0]))
p.append(ay(src[:, 0], dst[:, 0]))
p.append(ax(src[:, 1], dst[:, 1]))
p.append(ay(src[:, 1], dst[:, 1]))
p.append(ax(src[:, 2], dst[:, 2]))
p.append(ay(src[:, 2], dst[:, 2]))
p.append(ax(src[:, 3], dst[:, 3]))
p.append(ay(src[:, 3], dst[:, 3]))
# A is Bx8x8
A = torch.stack(p, dim=1)
# b is a Bx8x1
b = torch.stack([
dst[:, 0:1, 0], dst[:, 0:1, 1],
dst[:, 1:2, 0], dst[:, 1:2, 1],
dst[:, 2:3, 0], dst[:, 2:3, 1],
dst[:, 3:4, 0], dst[:, 3:4, 1],
], dim=1)
# solve the system Ax = b
# X, LU = torch.gesv(b, A)
X = torch.linalg.solve(A, b)
# create variable to return
batch_size = src.shape[0]
M = torch.ones(batch_size, 9, device=src.device, dtype=src.dtype)
M[..., :8] = torch.squeeze(X, dim=-1)
return M.view(-1, 3, 3) # Bx3x3
def warp_perspective(src, M, dsize, flags='bilinear', border_mode=None,
border_value=0):
r"""Applies a perspective transformation to an image.
The function warp_perspective transforms the source image using
the specified matrix:
.. math::
\text{dst} (x, y) = \text{src} \left(
\frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
\frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}}
\right )
Args:
src (torch.Tensor): input image.
M (Tensor): transformation matrix.
dsize (tuple): size of the output image (height, width).
Returns:
Tensor: the warped input image.
Shape:
- Input: :math:`(B, C, H, W)` and :math:`(B, 3, 3)`
- Output: :math:`(B, C, H, W)`
.. note::
See a working example `here <https://github.com/arraiy/torchgeometry/
blob/master/examples/warp_perspective.ipynb>`_.
"""
if not torch.is_tensor(src):
raise TypeError("Input src type is not a torch.Tensor. Got {}"
.format(type(src)))
if not torch.is_tensor(M):
raise TypeError("Input M type is not a torch.Tensor. Got {}"
.format(type(M)))
if not len(src.shape) == 4:
raise ValueError("Input src must be a BxCxHxW tensor. Got {}"
.format(src.shape))
if not (len(M.shape) == 3 or M.shape[-2:] == (3, 3)):
raise ValueError("Input M must be a Bx3x3 tensor. Got {}"
.format(src.shape))
# launches the warper
return transform_warp_impl(src, M, (src.shape[-2:]), dsize)
def transform_warp_impl(src, dst_pix_trans_src_pix, dsize_src, dsize_dst):
"""Compute the transform in normalized cooridnates and perform the warping.
"""
dst_norm_trans_dst_norm = dst_norm_to_dst_norm(
dst_pix_trans_src_pix, dsize_src, dsize_dst)
return homography_warp(src, torch.inverse(
dst_norm_trans_dst_norm), dsize_dst)
def dst_norm_to_dst_norm(dst_pix_trans_src_pix, dsize_src, dsize_dst):
# source and destination sizes
src_h, src_w = dsize_src
dst_h, dst_w = dsize_dst
# the devices and types
device = dst_pix_trans_src_pix.device
dtype = dst_pix_trans_src_pix.dtype
# compute the transformation pixel/norm for src/dst
src_norm_trans_src_pix = normal_transform_pixel(
src_h, src_w).to(device).to(dtype)
src_pix_trans_src_norm = torch.inverse(src_norm_trans_src_pix)
dst_norm_trans_dst_pix = normal_transform_pixel(
dst_h, dst_w).to(device).to(dtype)
# compute chain transformations
dst_norm_trans_src_norm = torch.matmul(
dst_norm_trans_dst_pix, torch.matmul(
dst_pix_trans_src_pix, src_pix_trans_src_norm))
return dst_norm_trans_src_norm
def normal_transform_pixel(height, width):
tr_mat = torch.Tensor([[1.0, 0.0, -1.0],
[0.0, 1.0, -1.0],
[0.0, 0.0, 1.0]]) # 1x3x3
tr_mat[0, 0] = tr_mat[0, 0] * 2.0 / (width - 1.0)
tr_mat[1, 1] = tr_mat[1, 1] * 2.0 / (height - 1.0)
tr_mat = tr_mat.unsqueeze(0)
return tr_mat
def homography_warp(patch_src: torch.Tensor,
dst_homo_src: torch.Tensor,
dsize: Tuple[int, int],
mode: Optional[str] = 'bilinear',
padding_mode: Optional[str] = 'zeros') -> torch.Tensor:
r"""Function that warps image patchs or tensors by homographies.
See :class:`~torchgeometry.HomographyWarper` for details.
Args:
patch_src (torch.Tensor): The image or tensor to warp. Should be from
source of shape :math:`(N, C, H, W)`.
dst_homo_src (torch.Tensor): The homography or stack of homographies
from source to destination of shape
:math:`(N, 3, 3)`.
dsize (Tuple[int, int]): The height and width of the image to warp.
mode (Optional[str]): interpolation mode to calculate output values
'bilinear' | 'nearest'. Default: 'bilinear'.
padding_mode (Optional[str]): padding mode for outside grid values
'zeros' | 'border' | 'reflection'. Default: 'zeros'.
Return:
torch.Tensor: Patch sampled at locations from source to destination.
Example:
>>> input = torch.rand(1, 3, 32, 32)
>>> homography = torch.eye(3).view(1, 3, 3)
>>> output = tgm.homography_warp(input, homography, (32, 32)) # NxCxHxW
"""
height, width = dsize
warper = HomographyWarper(height, width, mode, padding_mode)
return warper(patch_src, dst_homo_src)
class HomographyWarper(nn.Module):
r"""Warps image patches or tensors by homographies.
.. math::
X_{dst} = H_{src}^{\{dst\}} * X_{src}
Args:
height (int): The height of the image to warp.
width (int): The width of the image to warp.
mode (Optional[str]): interpolation mode to calculate output values
'bilinear' | 'nearest'. Default: 'bilinear'.
padding_mode (Optional[str]): padding mode for outside grid values
'zeros' | 'border' | 'reflection'. Default: 'zeros'.
normalized_coordinates (Optional[bool]): wether to use a grid with
normalized coordinates.
"""
def __init__(
self,
height: int,
width: int,
mode: Optional[str] = 'bilinear',
padding_mode: Optional[str] = 'zeros',
normalized_coordinates: Optional[bool] = True) -> None:
super(HomographyWarper, self).__init__()
self.width: int = width
self.height: int = height
self.mode: Optional[str] = mode
self.padding_mode: Optional[str] = padding_mode
self.normalized_coordinates: Optional[bool] = normalized_coordinates
# create base grid to compute the flow
self.grid: torch.Tensor = create_meshgrid(
height, width, normalized_coordinates=normalized_coordinates)
def warp_grid(self, dst_homo_src: torch.Tensor) -> torch.Tensor:
r"""Computes the grid to warp the coordinates grid by an homography.
Args:
dst_homo_src (torch.Tensor): Homography or homographies (stacked) to
transform all points in the grid. Shape of the
homography has to be :math:`(N, 3, 3)`.
Returns:
torch.Tensor: the transformed grid of shape :math:`(N, H, W, 2)`.
"""
batch_size: int = dst_homo_src.shape[0]
device: torch.device = dst_homo_src.device
dtype: torch.dtype = dst_homo_src.dtype
# expand grid to match the input batch size
grid: torch.Tensor = self.grid.expand(batch_size, -1, -1, -1) # NxHxWx2
if len(dst_homo_src.shape) == 3: # local homography case
dst_homo_src = dst_homo_src.view(batch_size, 1, 3, 3) # NxHxWx3x3
# perform the actual grid transformation,
# the grid is copied to input device and casted to the same type
flow: torch.Tensor = transform_points(
dst_homo_src, grid.to(device).to(dtype)) # NxHxWx2
return flow.view(batch_size, self.height, self.width, 2) # NxHxWx2
def forward(
self,
patch_src: torch.Tensor,
dst_homo_src: torch.Tensor) -> torch.Tensor:
r"""Warps an image or tensor from source into reference frame.
Args:
patch_src (torch.Tensor): The image or tensor to warp.
Should be from source.
dst_homo_src (torch.Tensor): The homography or stack of homographies
from source to destination. The homography assumes normalized
coordinates [-1, 1].
Return:
torch.Tensor: Patch sampled at locations from source to destination.
Shape:
- Input: :math:`(N, C, H, W)` and :math:`(N, 3, 3)`
- Output: :math:`(N, C, H, W)`
Example:
>>> input = torch.rand(1, 3, 32, 32)
>>> homography = torch.eye(3).view(1, 3, 3)
>>> warper = tgm.HomographyWarper(32, 32)
>>> output = warper(input, homography) # NxCxHxW
"""
if not dst_homo_src.device == patch_src.device:
raise TypeError("Patch and homography must be on the same device. \
Got patch.device: {} dst_H_src.device: {}."
.format(patch_src.device, dst_homo_src.device))
return F.grid_sample(patch_src, self.warp_grid(dst_homo_src),
mode=self.mode, padding_mode=self.padding_mode)
def create_meshgrid(
height: int,
width: int,
normalized_coordinates: Optional[bool] = True):
"""Generates a coordinate grid for an image.
When the flag `normalized_coordinates` is set to True, the grid is
normalized to be in the range [-1,1] to be consistent with the pytorch
function grid_sample.
http://pytorch.org/docs/master/nn.html#torch.nn.functional.grid_sample
Args:
height (int): the image height (rows).
width (int): the image width (cols).
normalized_coordinates (Optional[bool]): wether to normalize
coordinates in the range [-1, 1] in order to be consistent with the
PyTorch function grid_sample.
Return:
torch.Tensor: returns a grid tensor with shape :math:`(1, H, W, 2)`.
"""
# generate coordinates
xs: Optional[torch.Tensor] = None
ys: Optional[torch.Tensor] = None
if normalized_coordinates:
xs = torch.linspace(-1, 1, width)
ys = torch.linspace(-1, 1, height)
else:
xs = torch.linspace(0, width - 1, width)
ys = torch.linspace(0, height - 1, height)
# generate grid by stacking coordinates
base_grid: torch.Tensor = torch.stack(
torch.meshgrid([xs, ys])).transpose(1, 2) # 2xHxW
return torch.unsqueeze(base_grid, dim=0).permute(0, 2, 3, 1) # 1xHxWx2
def transform_points(trans_01: torch.Tensor,
points_1: torch.Tensor) -> torch.Tensor:
r"""Function that applies transformations to a set of points.
Args:
trans_01 (torch.Tensor): tensor for transformations of shape
:math:`(B, D+1, D+1)`.
points_1 (torch.Tensor): tensor of points of shape :math:`(B, N, D)`.
Returns:
torch.Tensor: tensor of N-dimensional points.
Shape:
- Output: :math:`(B, N, D)`
Examples:
>>> points_1 = torch.rand(2, 4, 3) # BxNx3
>>> trans_01 = torch.eye(4).view(1, 4, 4) # Bx4x4
>>> points_0 = tgm.transform_points(trans_01, points_1) # BxNx3
"""
if not torch.is_tensor(trans_01) or not torch.is_tensor(points_1):
raise TypeError("Input type is not a torch.Tensor")
if not trans_01.device == points_1.device:
raise TypeError("Tensor must be in the same device")
if not trans_01.shape[0] == points_1.shape[0]:
raise ValueError("Input batch size must be the same for both tensors")
if not trans_01.shape[-1] == (points_1.shape[-1] + 1):
raise ValueError("Last input dimensions must differe by one unit")
# to homogeneous
points_1_h = convert_points_to_homogeneous(points_1) # BxNxD+1
# transform coordinates
points_0_h = torch.matmul(
trans_01.unsqueeze(1), points_1_h.unsqueeze(-1))
points_0_h = torch.squeeze(points_0_h, dim=-1)
# to euclidean
points_0 = convert_points_from_homogeneous(points_0_h) # BxNxD
return points_0
def convert_points_to_homogeneous(points):
r"""Function that converts points from Euclidean to homogeneous space.
See :class:`~torchgeometry.ConvertPointsToHomogeneous` for details.
Examples::
>>> input = torch.rand(2, 4, 3) # BxNx3
>>> output = tgm.convert_points_to_homogeneous(input) # BxNx4
"""
if not torch.is_tensor(points):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
type(points)))
if len(points.shape) < 2:
raise ValueError("Input must be at least a 2D tensor. Got {}".format(
points.shape))
return nn.functional.pad(points, (0, 1), "constant", 1.0)
def convert_points_from_homogeneous(points):
r"""Function that converts points from homogeneous to Euclidean space.
See :class:`~torchgeometry.ConvertPointsFromHomogeneous` for details.
Examples::
>>> input = torch.rand(2, 4, 3) # BxNx3
>>> output = tgm.convert_points_from_homogeneous(input) # BxNx2
"""
if not torch.is_tensor(points):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
type(points)))
if len(points.shape) < 2:
raise ValueError("Input must be at least a 2D tensor. Got {}".format(
points.shape))
return points[..., :-1] / points[..., -1:] |