|
use anyhow::Result;
|
|
use clap::ValueEnum;
|
|
use half::f16;
|
|
use ndarray::{Array, CowArray, IxDyn};
|
|
use ort::execution_providers::{CUDAExecutionProviderOptions, TensorRTExecutionProviderOptions};
|
|
use ort::tensor::TensorElementDataType;
|
|
use ort::{Environment, ExecutionProvider, Session, SessionBuilder, Value};
|
|
use regex::Regex;
|
|
|
|
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, ValueEnum)]
|
|
pub enum YOLOTask {
|
|
|
|
Classify,
|
|
Detect,
|
|
Pose,
|
|
Segment,
|
|
}
|
|
|
|
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
|
|
pub enum OrtEP {
|
|
|
|
Cpu,
|
|
Cuda(u32),
|
|
Trt(u32),
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct Batch {
|
|
pub opt: u32,
|
|
pub min: u32,
|
|
pub max: u32,
|
|
}
|
|
|
|
impl Default for Batch {
|
|
fn default() -> Self {
|
|
Self {
|
|
opt: 1,
|
|
min: 1,
|
|
max: 1,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Default)]
|
|
pub struct OrtInputs {
|
|
|
|
pub shapes: Vec<Vec<i32>>,
|
|
pub dtypes: Vec<TensorElementDataType>,
|
|
pub names: Vec<String>,
|
|
pub sizes: Vec<Vec<u32>>,
|
|
}
|
|
|
|
impl OrtInputs {
|
|
pub fn new(session: &Session) -> Self {
|
|
let mut shapes = Vec::new();
|
|
let mut dtypes = Vec::new();
|
|
let mut names = Vec::new();
|
|
for i in session.inputs.iter() {
|
|
let shape: Vec<i32> = i
|
|
.dimensions()
|
|
.map(|x| if let Some(x) = x { x as i32 } else { -1i32 })
|
|
.collect();
|
|
shapes.push(shape);
|
|
dtypes.push(i.input_type);
|
|
names.push(i.name.clone());
|
|
}
|
|
Self {
|
|
shapes,
|
|
dtypes,
|
|
names,
|
|
..Default::default()
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct OrtConfig {
|
|
|
|
pub f: String,
|
|
pub task: Option<YOLOTask>,
|
|
pub ep: OrtEP,
|
|
pub trt_fp16: bool,
|
|
pub batch: Batch,
|
|
pub image_size: (Option<u32>, Option<u32>),
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct OrtBackend {
|
|
|
|
session: Session,
|
|
task: YOLOTask,
|
|
ep: OrtEP,
|
|
batch: Batch,
|
|
inputs: OrtInputs,
|
|
}
|
|
|
|
impl OrtBackend {
|
|
pub fn build(args: OrtConfig) -> Result<Self> {
|
|
|
|
let env = Environment::builder()
|
|
.with_name("YOLOv8")
|
|
.with_log_level(ort::LoggingLevel::Verbose)
|
|
.build()?
|
|
.into_arc();
|
|
let session = SessionBuilder::new(&env)?.with_model_from_file(&args.f)?;
|
|
|
|
|
|
let mut inputs = OrtInputs::new(&session);
|
|
|
|
|
|
let mut batch = args.batch;
|
|
let batch = if inputs.shapes[0][0] == -1 {
|
|
batch
|
|
} else {
|
|
assert_eq!(
|
|
inputs.shapes[0][0] as u32, batch.opt,
|
|
"Expected batch size: {}, got {}. Try using `--batch {}`.",
|
|
inputs.shapes[0][0] as u32, batch.opt, inputs.shapes[0][0] as u32
|
|
);
|
|
batch.opt = inputs.shapes[0][0] as u32;
|
|
batch
|
|
};
|
|
|
|
|
|
let height = if inputs.shapes[0][2] == -1 {
|
|
match args.image_size.0 {
|
|
Some(height) => height,
|
|
None => panic!("Failed to get model height. Make it explicit with `--height`"),
|
|
}
|
|
} else {
|
|
inputs.shapes[0][2] as u32
|
|
};
|
|
let width = if inputs.shapes[0][3] == -1 {
|
|
match args.image_size.1 {
|
|
Some(width) => width,
|
|
None => panic!("Failed to get model width. Make it explicit with `--width`"),
|
|
}
|
|
} else {
|
|
inputs.shapes[0][3] as u32
|
|
};
|
|
inputs.sizes.push(vec![height, width]);
|
|
|
|
|
|
let (ep, provider) = match args.ep {
|
|
OrtEP::Cuda(device_id) => Self::set_ep_cuda(device_id),
|
|
OrtEP::Trt(device_id) => Self::set_ep_trt(device_id, args.trt_fp16, &batch, &inputs),
|
|
_ => (OrtEP::Cpu, ExecutionProvider::CPU(Default::default())),
|
|
};
|
|
|
|
|
|
let session = SessionBuilder::new(&env)?
|
|
|
|
.with_execution_providers([provider])?
|
|
.with_model_from_file(args.f)?;
|
|
|
|
|
|
let task = match args.task {
|
|
Some(task) => task,
|
|
None => match session.metadata() {
|
|
Err(_) => panic!("No metadata found. Try making it explicit by `--task`"),
|
|
Ok(metadata) => match metadata.custom("task") {
|
|
Err(_) => panic!("Can not get custom value. Try making it explicit by `--task`"),
|
|
Ok(value) => match value {
|
|
None => panic!("No correspoing value of `task` found in metadata. Make it explicit by `--task`"),
|
|
Some(task) => match task.as_str() {
|
|
"classify" => YOLOTask::Classify,
|
|
"detect" => YOLOTask::Detect,
|
|
"pose" => YOLOTask::Pose,
|
|
"segment" => YOLOTask::Segment,
|
|
x => todo!("{:?} is not supported for now!", x),
|
|
},
|
|
},
|
|
},
|
|
},
|
|
};
|
|
|
|
Ok(Self {
|
|
session,
|
|
task,
|
|
ep,
|
|
batch,
|
|
inputs,
|
|
})
|
|
}
|
|
|
|
pub fn fetch_inputs_from_session(
|
|
session: &Session,
|
|
) -> (Vec<Vec<i32>>, Vec<TensorElementDataType>, Vec<String>) {
|
|
|
|
let mut shapes = Vec::new();
|
|
let mut dtypes = Vec::new();
|
|
let mut names = Vec::new();
|
|
for i in session.inputs.iter() {
|
|
let shape: Vec<i32> = i
|
|
.dimensions()
|
|
.map(|x| if let Some(x) = x { x as i32 } else { -1i32 })
|
|
.collect();
|
|
shapes.push(shape);
|
|
dtypes.push(i.input_type);
|
|
names.push(i.name.clone());
|
|
}
|
|
(shapes, dtypes, names)
|
|
}
|
|
|
|
pub fn set_ep_cuda(device_id: u32) -> (OrtEP, ExecutionProvider) {
|
|
|
|
if ExecutionProvider::CUDA(Default::default()).is_available() {
|
|
(
|
|
OrtEP::Cuda(device_id),
|
|
ExecutionProvider::CUDA(CUDAExecutionProviderOptions {
|
|
device_id,
|
|
..Default::default()
|
|
}),
|
|
)
|
|
} else {
|
|
println!("> CUDA is not available! Using CPU.");
|
|
(OrtEP::Cpu, ExecutionProvider::CPU(Default::default()))
|
|
}
|
|
}
|
|
|
|
pub fn set_ep_trt(
|
|
device_id: u32,
|
|
fp16: bool,
|
|
batch: &Batch,
|
|
inputs: &OrtInputs,
|
|
) -> (OrtEP, ExecutionProvider) {
|
|
|
|
if ExecutionProvider::TensorRT(Default::default()).is_available() {
|
|
let (height, width) = (inputs.sizes[0][0], inputs.sizes[0][1]);
|
|
|
|
|
|
if inputs.dtypes[0] == TensorElementDataType::Float16 && !fp16 {
|
|
panic!(
|
|
"Dtype mismatch! Expected: Float32, got: {:?}. You should use `--fp16`",
|
|
inputs.dtypes[0]
|
|
);
|
|
}
|
|
|
|
|
|
let mut opt_string = String::new();
|
|
let mut min_string = String::new();
|
|
let mut max_string = String::new();
|
|
for name in inputs.names.iter() {
|
|
let s_opt = format!("{}:{}x3x{}x{},", name, batch.opt, height, width);
|
|
let s_min = format!("{}:{}x3x{}x{},", name, batch.min, height, width);
|
|
let s_max = format!("{}:{}x3x{}x{},", name, batch.max, height, width);
|
|
opt_string.push_str(s_opt.as_str());
|
|
min_string.push_str(s_min.as_str());
|
|
max_string.push_str(s_max.as_str());
|
|
}
|
|
let _ = opt_string.pop();
|
|
let _ = min_string.pop();
|
|
let _ = max_string.pop();
|
|
(
|
|
OrtEP::Trt(device_id),
|
|
ExecutionProvider::TensorRT(TensorRTExecutionProviderOptions {
|
|
device_id,
|
|
fp16_enable: fp16,
|
|
timing_cache_enable: true,
|
|
profile_min_shapes: min_string,
|
|
profile_max_shapes: max_string,
|
|
profile_opt_shapes: opt_string,
|
|
..Default::default()
|
|
}),
|
|
)
|
|
} else {
|
|
println!("> TensorRT is not available! Try using CUDA...");
|
|
Self::set_ep_cuda(device_id)
|
|
}
|
|
}
|
|
|
|
pub fn fetch_from_metadata(&self, key: &str) -> Option<String> {
|
|
|
|
match self.session.metadata() {
|
|
Err(_) => None,
|
|
Ok(metadata) => match metadata.custom(key) {
|
|
Err(_) => None,
|
|
Ok(value) => value,
|
|
},
|
|
}
|
|
}
|
|
|
|
pub fn run(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> {
|
|
|
|
match self.dtype() {
|
|
TensorElementDataType::Float16 => self.run_fp16(xs, profile),
|
|
TensorElementDataType::Float32 => self.run_fp32(xs, profile),
|
|
_ => todo!(),
|
|
}
|
|
}
|
|
|
|
pub fn run_fp16(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> {
|
|
|
|
let t = std::time::Instant::now();
|
|
let xs = xs.mapv(f16::from_f32);
|
|
if profile {
|
|
println!("[ORT f32->f16]: {:?}", t.elapsed());
|
|
}
|
|
|
|
|
|
let t = std::time::Instant::now();
|
|
let xs = CowArray::from(xs);
|
|
let xs = vec![Value::from_array(self.session.allocator(), &xs)?];
|
|
if profile {
|
|
println!("[ORT H2D]: {:?}", t.elapsed());
|
|
}
|
|
|
|
|
|
let t = std::time::Instant::now();
|
|
let ys = self.session.run(xs)?;
|
|
if profile {
|
|
println!("[ORT Inference]: {:?}", t.elapsed());
|
|
}
|
|
|
|
|
|
Ok(ys
|
|
.iter()
|
|
.map(|x| {
|
|
|
|
let t = std::time::Instant::now();
|
|
let x = x.try_extract::<_>().unwrap().view().clone().into_owned();
|
|
if profile {
|
|
println!("[ORT D2H]: {:?}", t.elapsed());
|
|
}
|
|
|
|
|
|
let t_ = std::time::Instant::now();
|
|
let x = x.mapv(f16::to_f32);
|
|
if profile {
|
|
println!("[ORT f16->f32]: {:?}", t_.elapsed());
|
|
}
|
|
x
|
|
})
|
|
.collect::<Vec<Array<_, _>>>())
|
|
}
|
|
|
|
pub fn run_fp32(&self, xs: Array<f32, IxDyn>, profile: bool) -> Result<Vec<Array<f32, IxDyn>>> {
|
|
|
|
let t = std::time::Instant::now();
|
|
let xs = CowArray::from(xs);
|
|
let xs = vec![Value::from_array(self.session.allocator(), &xs)?];
|
|
if profile {
|
|
println!("[ORT H2D]: {:?}", t.elapsed());
|
|
}
|
|
|
|
|
|
let t = std::time::Instant::now();
|
|
let ys = self.session.run(xs)?;
|
|
if profile {
|
|
println!("[ORT Inference]: {:?}", t.elapsed());
|
|
}
|
|
|
|
|
|
Ok(ys
|
|
.iter()
|
|
.map(|x| {
|
|
let t = std::time::Instant::now();
|
|
let x = x.try_extract::<_>().unwrap().view().clone().into_owned();
|
|
if profile {
|
|
println!("[ORT D2H]: {:?}", t.elapsed());
|
|
}
|
|
x
|
|
})
|
|
.collect::<Vec<Array<_, _>>>())
|
|
}
|
|
|
|
pub fn output_shapes(&self) -> Vec<Vec<i32>> {
|
|
let mut shapes = Vec::new();
|
|
for o in &self.session.outputs {
|
|
let shape: Vec<_> = o
|
|
.dimensions()
|
|
.map(|x| if let Some(x) = x { x as i32 } else { -1i32 })
|
|
.collect();
|
|
shapes.push(shape);
|
|
}
|
|
shapes
|
|
}
|
|
|
|
pub fn output_dtypes(&self) -> Vec<TensorElementDataType> {
|
|
let mut dtypes = Vec::new();
|
|
self.session
|
|
.outputs
|
|
.iter()
|
|
.for_each(|x| dtypes.push(x.output_type));
|
|
dtypes
|
|
}
|
|
|
|
pub fn input_shapes(&self) -> &Vec<Vec<i32>> {
|
|
&self.inputs.shapes
|
|
}
|
|
|
|
pub fn input_names(&self) -> &Vec<String> {
|
|
&self.inputs.names
|
|
}
|
|
|
|
pub fn input_dtypes(&self) -> &Vec<TensorElementDataType> {
|
|
&self.inputs.dtypes
|
|
}
|
|
|
|
pub fn dtype(&self) -> TensorElementDataType {
|
|
self.input_dtypes()[0]
|
|
}
|
|
|
|
pub fn height(&self) -> u32 {
|
|
self.inputs.sizes[0][0]
|
|
}
|
|
|
|
pub fn width(&self) -> u32 {
|
|
self.inputs.sizes[0][1]
|
|
}
|
|
|
|
pub fn is_height_dynamic(&self) -> bool {
|
|
self.input_shapes()[0][2] == -1
|
|
}
|
|
|
|
pub fn is_width_dynamic(&self) -> bool {
|
|
self.input_shapes()[0][3] == -1
|
|
}
|
|
|
|
pub fn batch(&self) -> u32 {
|
|
self.batch.opt
|
|
}
|
|
|
|
pub fn is_batch_dynamic(&self) -> bool {
|
|
self.input_shapes()[0][0] == -1
|
|
}
|
|
|
|
pub fn ep(&self) -> &OrtEP {
|
|
&self.ep
|
|
}
|
|
|
|
pub fn task(&self) -> YOLOTask {
|
|
self.task.clone()
|
|
}
|
|
|
|
pub fn names(&self) -> Option<Vec<String>> {
|
|
|
|
|
|
match self.fetch_from_metadata("names") {
|
|
Some(names) => {
|
|
let re = Regex::new(r#"(['"])([-()\w '"]+)(['"])"#).unwrap();
|
|
let mut names_ = vec![];
|
|
for (_, [_, name, _]) in re.captures_iter(&names).map(|x| x.extract()) {
|
|
names_.push(name.to_string());
|
|
}
|
|
Some(names_)
|
|
}
|
|
None => None,
|
|
}
|
|
}
|
|
|
|
pub fn nk(&self) -> Option<u32> {
|
|
|
|
match self.fetch_from_metadata("kpt_shape") {
|
|
None => None,
|
|
Some(kpt_string) => {
|
|
let re = Regex::new(r"([0-9]+), ([0-9]+)").unwrap();
|
|
let caps = re.captures(&kpt_string).unwrap();
|
|
Some(caps.get(1).unwrap().as_str().parse::<u32>().unwrap())
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn nc(&self) -> Option<u32> {
|
|
|
|
match self.names() {
|
|
|
|
Some(names) => Some(names.len() as u32),
|
|
None => match self.task() {
|
|
|
|
YOLOTask::Classify => Some(self.output_shapes()[0][1] as u32),
|
|
YOLOTask::Detect => {
|
|
if self.output_shapes()[0][1] == -1 {
|
|
None
|
|
} else {
|
|
|
|
Some(self.output_shapes()[0][1] as u32 - 4)
|
|
}
|
|
}
|
|
YOLOTask::Pose => {
|
|
match self.nk() {
|
|
None => None,
|
|
Some(nk) => {
|
|
if self.output_shapes()[0][1] == -1 {
|
|
None
|
|
} else {
|
|
|
|
Some(self.output_shapes()[0][1] as u32 - 4 - 3 * nk)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
YOLOTask::Segment => {
|
|
if self.output_shapes()[0][1] == -1 {
|
|
None
|
|
} else {
|
|
|
|
Some((self.output_shapes()[0][1] - self.output_shapes()[1][1]) as u32 - 4)
|
|
}
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
pub fn nm(&self) -> Option<u32> {
|
|
|
|
match self.task() {
|
|
YOLOTask::Segment => Some(self.output_shapes()[1][1] as u32),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
pub fn na(&self) -> Option<u32> {
|
|
|
|
match self.task() {
|
|
YOLOTask::Segment | YOLOTask::Detect | YOLOTask::Pose => {
|
|
if self.output_shapes()[0][2] == -1 {
|
|
None
|
|
} else {
|
|
Some(self.output_shapes()[0][2] as u32)
|
|
}
|
|
}
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
pub fn author(&self) -> Option<String> {
|
|
self.fetch_from_metadata("author")
|
|
}
|
|
|
|
pub fn version(&self) -> Option<String> {
|
|
self.fetch_from_metadata("version")
|
|
}
|
|
}
|
|
|