Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# Load your trained model and tokenizer from Hugging Face | |
model_name = "ai4bharat/IndicTrans" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
# Streamlit UI | |
st.title("Colloquial Language Translator") | |
st.write("Enter English text to translate into the colloquial language of your choice.") | |
# User input | |
input_text = st.text_input("Enter English text:") | |
# When the button is clicked | |
if st.button("Translate"): | |
if input_text: | |
# Tokenize and generate output | |
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True) | |
outputs = model.generate(**inputs) | |
translation = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Display the result | |
st.success(f"Translation: {translation}") | |
else: | |
st.warning("Please enter some text to translate.") | |