GEE_Calculator / app.py
YashMK89's picture
update app.py
53916c0 verified
raw
history blame
15.8 kB
import streamlit as st
import json
import ee
import os
import pandas as pd
import geopandas as gpd
from datetime import datetime
import leafmap.foliumap as leafmap
import time
import re
# Set up the page layout
st.set_page_config(layout="wide")
# Custom button styling
m = st.markdown(
"""
<style>
div.stButton > button:first-child {
background-color: #006400;
color:#ffffff;
}
</style>""",
unsafe_allow_html=True,
)
# Logo
st.write(
f"""
<div style="display: flex; justify-content: space-between; align-items: center;">
<img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/ISRO_Logo.png" style="width: 20%; margin-right: auto;">
<img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/SAC_Logo.png" style="width: 20%; margin-left: auto;">
</div>
""",
unsafe_allow_html=True,
)
# Authenticate and initialize Earth Engine
earthengine_credentials = os.environ.get("EE_Authentication")
# Initialize Earth Engine with secret credentials
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
f.write(earthengine_credentials)
ee.Initialize(project='ee-yashsacisro24')
# Load Sentinel dataset options from JSON file
with open("sentinel_datasets.json") as f:
data = json.load(f)
# Display the title and dataset selection
st.title("Sentinel Dataset")
# Select dataset category and subcategory (case-insensitive selection)
main_selection = st.selectbox("Select Sentinel Dataset Category", list(data.keys()))
if main_selection:
sub_options = data[main_selection]["sub_options"]
sub_selection = st.selectbox("Select Specific Dataset ID", list(sub_options.keys()))
# Earth Engine Index Calculator Section
st.header("Earth Engine Index Calculator")
# Choose Index or Custom Formula (case-insensitive)
index_choice = st.selectbox("Select an Index or Enter Custom Formula", ['NDVI', 'NDWI', 'Average NO₂', 'Custom Formula'])
# Initialize custom_formula variable
custom_formula = ""
# Display corresponding formula based on the index selected (case-insensitive)
if index_choice.lower() == 'ndvi':
st.write("Formula for NDVI: NDVI = (B8 - B4) / (B8 + B4)")
elif index_choice.lower() == 'ndwi':
st.write("Formula for NDWI: NDWI = (B3 - B8) / (B3 + B8)")
elif index_choice.lower() == 'average no₂':
st.write("Formula for Average NO₂: Average NO₂ = Mean(NO2 band)")
elif index_choice.lower() == 'custom formula':
custom_formula = st.text_input("Enter Custom Formula (e.g., 'B5 - B4 / B5 + B4')")
st.write(f"Custom Formula: {custom_formula}") # Display the custom formula after the user inputs it
# Function to check if the polygon geometry is valid and convert it to the correct format
def convert_to_ee_geometry(geometry):
# Ensure the polygon geometry is in the right format
if geometry.is_valid:
# Convert the geometry to GeoJSON format
geojson = geometry.__geo_interface__
# Convert to Earth Engine geometry
return ee.Geometry(geojson)
else:
raise ValueError("Invalid geometry: The polygon geometry is not valid.")
# Function to read points from CSV
def read_csv(file_path):
df = pd.read_csv(file_path)
return df
# Function to read points from GeoJSON
def read_geojson(file_path):
gdf = gpd.read_file(file_path)
return gdf
# Function to read points from KML
def read_kml(file_path):
gdf = gpd.read_file(file_path, driver='KML')
return gdf
# Ask user whether they want to process 'Point' or 'Polygon' data (case-insensitive)
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
# Ask user to upload a file based on shape type (case-insensitive)
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
# Date Input for Start and End Dates
start_date = st.date_input("Start Date", value=pd.to_datetime('2020-01-01'))
end_date = st.date_input("End Date", value=pd.to_datetime('2020-12-31'))
# Convert start_date and end_date to string format for Earth Engine
start_date_str = start_date.strftime('%Y-%m-%d')
end_date_str = end_date.strftime('%Y-%m-%d')
# Initialize session state for storing results if not already done
if 'results' not in st.session_state:
st.session_state.results = []
if 'last_params' not in st.session_state:
st.session_state.last_params = {}
if 'map_data' not in st.session_state:
st.session_state.map_data = None # Initialize map_data
# Function to check if parameters have changed
def parameters_changed():
return (
st.session_state.last_params.get('main_selection') != main_selection or
st.session_state.last_params.get('sub_selection') != sub_selection or
st.session_state.last_params.get('index_choice') != index_choice or
st.session_state.last_params.get('start_date_str') != start_date_str or
st.session_state.last_params.get('end_date_str') != end_date_str
)
# If parameters have changed, reset the results
if parameters_changed():
st.session_state.results = [] # Clear the previous results
# Update the last parameters to the current ones
st.session_state.last_params = {
'main_selection': main_selection,
'sub_selection': sub_selection,
'index_choice': index_choice,
'start_date_str': start_date_str,
'end_date_str': end_date_str
}
# Function to perform index calculations
def calculate_ndvi(image, geometry):
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
result = ndvi.reduceRegion(
reducer=ee.Reducer.mean(),
geometry=geometry,
scale=30
)
return result.get('NDVI')
def calculate_ndwi(image, geometry):
ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI')
result = ndwi.reduceRegion(
reducer=ee.Reducer.mean(),
geometry=geometry,
scale=30
)
return result.get('NDWI')
def calculate_avg_no2_sentinel5p(image, geometry):
no2 = image.select('NO2').reduceRegion(
reducer=ee.Reducer.mean(),
geometry=geometry,
scale=1000
).get('NO2')
return no2
def calculate_custom_formula(image, geometry, formula):
result = image.expression(formula).rename('Custom Index').reduceRegion(
reducer=ee.Reducer.mean(),
geometry=geometry,
scale=30
)
return result.get('Custom Index')
# Process each point or polygon
if file_upload:
locations_df = None # Initialize locations_df to None
polygons_df = None # Initialize polygons_df to None
file_extension = os.path.splitext(file_upload.name)[1].lower() # Convert extension to lowercase
# Read file based on shape type (case-insensitive)
if shape_type.lower() == 'point':
if file_extension == '.csv':
locations_df = read_csv(file_upload)
elif file_extension == '.geojson':
locations_df = read_geojson(file_upload)
elif file_extension == '.kml':
locations_df = read_kml(file_upload)
else:
st.error("Unsupported file type. Please upload a CSV, GeoJSON, or KML file for points.")
elif shape_type.lower() == 'polygon':
if file_extension == '.geojson':
polygons_df = read_geojson(file_upload)
elif file_extension == '.kml':
polygons_df = read_kml(file_upload)
else:
st.error("Unsupported file type. Please upload a GeoJSON or KML file for polygons.")
# Check if locations_df is populated for points
if locations_df is not None:
# Display a preview of the points data
st.write("Preview of the uploaded points data:")
st.dataframe(locations_df.head())
# Create a LeafMap object to display the points
m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
# Add points to the map using a loop
for _, row in locations_df.iterrows():
latitude = row['latitude']
longitude = row['longitude']
# Check if latitude or longitude are NaN and skip if they are
if pd.isna(latitude) or pd.isna(longitude):
continue # Skip this row and move to the next one
m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
# Display map
st.write("Map of Uploaded Points:")
m.to_streamlit()
# Store the map in session_state
st.session_state.map_data = m
# Process each point for index calculation
for idx, row in locations_df.iterrows():
latitude = row['latitude']
longitude = row['longitude']
location_name = row.get('name', f"Point_{idx}")
# Skip processing if latitude or longitude is NaN
if pd.isna(latitude) or pd.isna(longitude):
continue # Skip this row and move to the next one
# Define the region of interest (ROI)
roi = ee.Geometry.Point([longitude, latitude])
# Load Sentinel-2 image collection
collection = ee.ImageCollection(sub_options[sub_selection]) \
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
.filterBounds(roi)
# Check if the collection has images for the selected date range
image_count = collection.size().getInfo()
if image_count == 0:
st.warning(f"No images found for {location_name}.")
else:
st.write(f"Found {image_count} images for {location_name}.")
image = collection.first()
# Perform the calculation based on user selection
result = None
if index_choice.lower() == 'ndvi':
result = calculate_ndvi(image, roi)
elif index_choice.lower() == 'ndwi':
result = calculate_ndwi(image, roi)
elif index_choice.lower() == 'average no₂':
if 'NO2' in image.bandNames().getInfo():
result = calculate_avg_no2_sentinel5p(image, roi)
else:
st.warning(f"No NO2 band found for {location_name}. Please use Sentinel-5P for NO₂ data.")
elif index_choice.lower() == 'custom formula' and custom_formula:
result = calculate_custom_formula(image, roi, custom_formula)
if result is not None:
# Only store the numeric value (not the dictionary structure)
calculated_value = result.getInfo() # Get the numeric value
# Store the result in session state
st.session_state.results.append({
'Location Name': location_name,
'Latitude': latitude,
'Longitude': longitude,
'Calculated Value': calculated_value
})
# Check if polygons_df is populated for polygons
if polygons_df is not None:
# Display a preview of the polygons data
st.write("Preview of the uploaded polygons data:")
st.dataframe(polygons_df.head())
# Create a LeafMap object to display the polygons
m = leafmap.Map(center=[polygons_df.geometry.centroid.y.mean(), polygons_df.geometry.centroid.x.mean()], zoom=10)
# Add polygons to the map
for _, row in polygons_df.iterrows():
polygon = row['geometry']
if polygon.is_valid: # Check if the geometry is valid
# Create a GeoDataFrame with the single row
gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=polygons_df.crs)
# Add the valid GeoDataFrame to the map
m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
# Display map
st.write("Map of Uploaded Polygons:")
m.to_streamlit()
# Store the map in session_state
st.session_state.map_data = m
# Process each polygon for index calculation
for idx, row in polygons_df.iterrows():
polygon = row['geometry']
location_name = row.get('name', f"Polygon_{idx}")
# Define the region of interest (ROI)
try:
roi = convert_to_ee_geometry(polygon)
except ValueError as e:
st.error(str(e))
continue # Skip this polygon if geometry is invalid
# Load Sentinel-2 image collection
collection = ee.ImageCollection(sub_options[sub_selection]) \
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
.filterBounds(roi)
# Check if the collection has images for the selected date range
image_count = collection.size().getInfo()
if image_count == 0:
st.warning(f"No images found for {location_name}.")
else:
st.write(f"Found {image_count} images for {location_name}.")
image = collection.first()
# Perform the calculation based on user selection
result = None
if index_choice.lower() == 'ndvi':
result = calculate_ndvi(image, roi)
elif index_choice.lower() == 'ndwi':
result = calculate_ndwi(image, roi)
elif index_choice.lower() == 'average no₂':
if 'NO2' in image.bandNames().getInfo():
result = calculate_avg_no2_sentinel5p(image, roi)
else:
st.warning(f"No NO2 band found for {location_name}. Please use Sentinel-5P for NO₂ data.")
elif index_choice.lower() == 'custom formula' and custom_formula:
result = calculate_custom_formula(image, roi, custom_formula)
if result is not None:
# Only store the numeric value (not the dictionary structure)
calculated_value = result.getInfo() # Get the numeric value
# Store the result in session state
st.session_state.results.append({
'Location Name': location_name,
'Calculated Value': calculated_value
})
# After processing, show the results
if st.session_state.results:
# Convert the results to a DataFrame for better visualization
result_df = pd.DataFrame(st.session_state.results)
# If the shape type is 'Point', include 'Latitude' and 'Longitude'
if shape_type.lower() == 'point':
# Show the results in a table format with Latitude and Longitude
st.write("Processed Results Table (Points):")
st.dataframe(result_df[['Location Name', 'Latitude', 'Longitude', 'Calculated Value']])
else:
# For polygons, we only show the Location Name and Calculated Value
st.write("Processed Results Table (Polygons):")
st.dataframe(result_df[['Location Name', 'Calculated Value']])
# Generate the dynamic filename
filename = f"{main_selection}_{sub_selection}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{shape_type}.csv"
# Convert results to DataFrame for download
st.download_button(
label="Download results as CSV",
data=result_df.to_csv(index=False).encode('utf-8'),
file_name=filename,
mime='text/csv'
)