Spaces:
Running
Running
File size: 15,750 Bytes
ffd6783 f4b0045 d5a8738 2fd3301 3a4f9a5 60b1538 0db3082 7a81711 a5d11e6 b977014 a5d11e6 21e0c5d 5dec096 0db3082 21e0c5d 0db3082 a5d11e6 14bdf12 f4b0045 14bdf12 f4b0045 cf7d33a f4b0045 cf7d33a 13769e5 e070e1d c04779d 5dec096 8299706 ffd6783 7483788 e070e1d 0db3082 c16c7db fcba768 cf7d33a 7483788 cf7d33a 9d458b0 7483788 fe61a21 7483788 fe61a21 7483788 fe61a21 7483788 cf7d33a 9d458b0 cf7d33a da99172 0ea6b9c da99172 0ea6b9c da99172 0ea6b9c da99172 0ea6b9c 36bd00d 0db3082 36bd00d 0db3082 36bd00d 0db3082 63b66dd 7483788 36bd00d 7483788 36bd00d 7b116ed 36bd00d 14bdf12 d3059d1 e975296 d3059d1 a957113 d3059d1 e975296 d3059d1 ab5b14b df2c46c e975296 7483788 e975296 7483788 e975296 7483788 e975296 df2c46c e975296 df2c46c e975296 df2c46c e975296 df2c46c da99172 6c93662 da99172 6c93662 da99172 6c93662 da99172 6c93662 da99172 4ac4e90 0ea6b9c 4ac4e90 0ea6b9c da99172 df2c46c 0ea6b9c ee13934 53916c0 ee13934 53916c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import streamlit as st
import json
import ee
import os
import pandas as pd
import geopandas as gpd
from datetime import datetime
import leafmap.foliumap as leafmap
import time
import re
# Set up the page layout
st.set_page_config(layout="wide")
# Custom button styling
m = st.markdown(
"""
<style>
div.stButton > button:first-child {
background-color: #006400;
color:#ffffff;
}
</style>""",
unsafe_allow_html=True,
)
# Logo
st.write(
f"""
<div style="display: flex; justify-content: space-between; align-items: center;">
<img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/ISRO_Logo.png" style="width: 20%; margin-right: auto;">
<img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/SAC_Logo.png" style="width: 20%; margin-left: auto;">
</div>
""",
unsafe_allow_html=True,
)
# Authenticate and initialize Earth Engine
earthengine_credentials = os.environ.get("EE_Authentication")
# Initialize Earth Engine with secret credentials
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
f.write(earthengine_credentials)
ee.Initialize(project='ee-yashsacisro24')
# Load Sentinel dataset options from JSON file
with open("sentinel_datasets.json") as f:
data = json.load(f)
# Display the title and dataset selection
st.title("Sentinel Dataset")
# Select dataset category and subcategory (case-insensitive selection)
main_selection = st.selectbox("Select Sentinel Dataset Category", list(data.keys()))
if main_selection:
sub_options = data[main_selection]["sub_options"]
sub_selection = st.selectbox("Select Specific Dataset ID", list(sub_options.keys()))
# Earth Engine Index Calculator Section
st.header("Earth Engine Index Calculator")
# Choose Index or Custom Formula (case-insensitive)
index_choice = st.selectbox("Select an Index or Enter Custom Formula", ['NDVI', 'NDWI', 'Average NO₂', 'Custom Formula'])
# Initialize custom_formula variable
custom_formula = ""
# Display corresponding formula based on the index selected (case-insensitive)
if index_choice.lower() == 'ndvi':
st.write("Formula for NDVI: NDVI = (B8 - B4) / (B8 + B4)")
elif index_choice.lower() == 'ndwi':
st.write("Formula for NDWI: NDWI = (B3 - B8) / (B3 + B8)")
elif index_choice.lower() == 'average no₂':
st.write("Formula for Average NO₂: Average NO₂ = Mean(NO2 band)")
elif index_choice.lower() == 'custom formula':
custom_formula = st.text_input("Enter Custom Formula (e.g., 'B5 - B4 / B5 + B4')")
st.write(f"Custom Formula: {custom_formula}") # Display the custom formula after the user inputs it
# Function to check if the polygon geometry is valid and convert it to the correct format
def convert_to_ee_geometry(geometry):
# Ensure the polygon geometry is in the right format
if geometry.is_valid:
# Convert the geometry to GeoJSON format
geojson = geometry.__geo_interface__
# Convert to Earth Engine geometry
return ee.Geometry(geojson)
else:
raise ValueError("Invalid geometry: The polygon geometry is not valid.")
# Function to read points from CSV
def read_csv(file_path):
df = pd.read_csv(file_path)
return df
# Function to read points from GeoJSON
def read_geojson(file_path):
gdf = gpd.read_file(file_path)
return gdf
# Function to read points from KML
def read_kml(file_path):
gdf = gpd.read_file(file_path, driver='KML')
return gdf
# Ask user whether they want to process 'Point' or 'Polygon' data (case-insensitive)
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
# Ask user to upload a file based on shape type (case-insensitive)
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
# Date Input for Start and End Dates
start_date = st.date_input("Start Date", value=pd.to_datetime('2020-01-01'))
end_date = st.date_input("End Date", value=pd.to_datetime('2020-12-31'))
# Convert start_date and end_date to string format for Earth Engine
start_date_str = start_date.strftime('%Y-%m-%d')
end_date_str = end_date.strftime('%Y-%m-%d')
# Initialize session state for storing results if not already done
if 'results' not in st.session_state:
st.session_state.results = []
if 'last_params' not in st.session_state:
st.session_state.last_params = {}
if 'map_data' not in st.session_state:
st.session_state.map_data = None # Initialize map_data
# Function to check if parameters have changed
def parameters_changed():
return (
st.session_state.last_params.get('main_selection') != main_selection or
st.session_state.last_params.get('sub_selection') != sub_selection or
st.session_state.last_params.get('index_choice') != index_choice or
st.session_state.last_params.get('start_date_str') != start_date_str or
st.session_state.last_params.get('end_date_str') != end_date_str
)
# If parameters have changed, reset the results
if parameters_changed():
st.session_state.results = [] # Clear the previous results
# Update the last parameters to the current ones
st.session_state.last_params = {
'main_selection': main_selection,
'sub_selection': sub_selection,
'index_choice': index_choice,
'start_date_str': start_date_str,
'end_date_str': end_date_str
}
# Function to perform index calculations
def calculate_ndvi(image, geometry):
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
result = ndvi.reduceRegion(
reducer=ee.Reducer.mean(),
geometry=geometry,
scale=30
)
return result.get('NDVI')
def calculate_ndwi(image, geometry):
ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI')
result = ndwi.reduceRegion(
reducer=ee.Reducer.mean(),
geometry=geometry,
scale=30
)
return result.get('NDWI')
def calculate_avg_no2_sentinel5p(image, geometry):
no2 = image.select('NO2').reduceRegion(
reducer=ee.Reducer.mean(),
geometry=geometry,
scale=1000
).get('NO2')
return no2
def calculate_custom_formula(image, geometry, formula):
result = image.expression(formula).rename('Custom Index').reduceRegion(
reducer=ee.Reducer.mean(),
geometry=geometry,
scale=30
)
return result.get('Custom Index')
# Process each point or polygon
if file_upload:
locations_df = None # Initialize locations_df to None
polygons_df = None # Initialize polygons_df to None
file_extension = os.path.splitext(file_upload.name)[1].lower() # Convert extension to lowercase
# Read file based on shape type (case-insensitive)
if shape_type.lower() == 'point':
if file_extension == '.csv':
locations_df = read_csv(file_upload)
elif file_extension == '.geojson':
locations_df = read_geojson(file_upload)
elif file_extension == '.kml':
locations_df = read_kml(file_upload)
else:
st.error("Unsupported file type. Please upload a CSV, GeoJSON, or KML file for points.")
elif shape_type.lower() == 'polygon':
if file_extension == '.geojson':
polygons_df = read_geojson(file_upload)
elif file_extension == '.kml':
polygons_df = read_kml(file_upload)
else:
st.error("Unsupported file type. Please upload a GeoJSON or KML file for polygons.")
# Check if locations_df is populated for points
if locations_df is not None:
# Display a preview of the points data
st.write("Preview of the uploaded points data:")
st.dataframe(locations_df.head())
# Create a LeafMap object to display the points
m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
# Add points to the map using a loop
for _, row in locations_df.iterrows():
latitude = row['latitude']
longitude = row['longitude']
# Check if latitude or longitude are NaN and skip if they are
if pd.isna(latitude) or pd.isna(longitude):
continue # Skip this row and move to the next one
m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
# Display map
st.write("Map of Uploaded Points:")
m.to_streamlit()
# Store the map in session_state
st.session_state.map_data = m
# Process each point for index calculation
for idx, row in locations_df.iterrows():
latitude = row['latitude']
longitude = row['longitude']
location_name = row.get('name', f"Point_{idx}")
# Skip processing if latitude or longitude is NaN
if pd.isna(latitude) or pd.isna(longitude):
continue # Skip this row and move to the next one
# Define the region of interest (ROI)
roi = ee.Geometry.Point([longitude, latitude])
# Load Sentinel-2 image collection
collection = ee.ImageCollection(sub_options[sub_selection]) \
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
.filterBounds(roi)
# Check if the collection has images for the selected date range
image_count = collection.size().getInfo()
if image_count == 0:
st.warning(f"No images found for {location_name}.")
else:
st.write(f"Found {image_count} images for {location_name}.")
image = collection.first()
# Perform the calculation based on user selection
result = None
if index_choice.lower() == 'ndvi':
result = calculate_ndvi(image, roi)
elif index_choice.lower() == 'ndwi':
result = calculate_ndwi(image, roi)
elif index_choice.lower() == 'average no₂':
if 'NO2' in image.bandNames().getInfo():
result = calculate_avg_no2_sentinel5p(image, roi)
else:
st.warning(f"No NO2 band found for {location_name}. Please use Sentinel-5P for NO₂ data.")
elif index_choice.lower() == 'custom formula' and custom_formula:
result = calculate_custom_formula(image, roi, custom_formula)
if result is not None:
# Only store the numeric value (not the dictionary structure)
calculated_value = result.getInfo() # Get the numeric value
# Store the result in session state
st.session_state.results.append({
'Location Name': location_name,
'Latitude': latitude,
'Longitude': longitude,
'Calculated Value': calculated_value
})
# Check if polygons_df is populated for polygons
if polygons_df is not None:
# Display a preview of the polygons data
st.write("Preview of the uploaded polygons data:")
st.dataframe(polygons_df.head())
# Create a LeafMap object to display the polygons
m = leafmap.Map(center=[polygons_df.geometry.centroid.y.mean(), polygons_df.geometry.centroid.x.mean()], zoom=10)
# Add polygons to the map
for _, row in polygons_df.iterrows():
polygon = row['geometry']
if polygon.is_valid: # Check if the geometry is valid
# Create a GeoDataFrame with the single row
gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=polygons_df.crs)
# Add the valid GeoDataFrame to the map
m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
# Display map
st.write("Map of Uploaded Polygons:")
m.to_streamlit()
# Store the map in session_state
st.session_state.map_data = m
# Process each polygon for index calculation
for idx, row in polygons_df.iterrows():
polygon = row['geometry']
location_name = row.get('name', f"Polygon_{idx}")
# Define the region of interest (ROI)
try:
roi = convert_to_ee_geometry(polygon)
except ValueError as e:
st.error(str(e))
continue # Skip this polygon if geometry is invalid
# Load Sentinel-2 image collection
collection = ee.ImageCollection(sub_options[sub_selection]) \
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
.filterBounds(roi)
# Check if the collection has images for the selected date range
image_count = collection.size().getInfo()
if image_count == 0:
st.warning(f"No images found for {location_name}.")
else:
st.write(f"Found {image_count} images for {location_name}.")
image = collection.first()
# Perform the calculation based on user selection
result = None
if index_choice.lower() == 'ndvi':
result = calculate_ndvi(image, roi)
elif index_choice.lower() == 'ndwi':
result = calculate_ndwi(image, roi)
elif index_choice.lower() == 'average no₂':
if 'NO2' in image.bandNames().getInfo():
result = calculate_avg_no2_sentinel5p(image, roi)
else:
st.warning(f"No NO2 band found for {location_name}. Please use Sentinel-5P for NO₂ data.")
elif index_choice.lower() == 'custom formula' and custom_formula:
result = calculate_custom_formula(image, roi, custom_formula)
if result is not None:
# Only store the numeric value (not the dictionary structure)
calculated_value = result.getInfo() # Get the numeric value
# Store the result in session state
st.session_state.results.append({
'Location Name': location_name,
'Calculated Value': calculated_value
})
# After processing, show the results
if st.session_state.results:
# Convert the results to a DataFrame for better visualization
result_df = pd.DataFrame(st.session_state.results)
# If the shape type is 'Point', include 'Latitude' and 'Longitude'
if shape_type.lower() == 'point':
# Show the results in a table format with Latitude and Longitude
st.write("Processed Results Table (Points):")
st.dataframe(result_df[['Location Name', 'Latitude', 'Longitude', 'Calculated Value']])
else:
# For polygons, we only show the Location Name and Calculated Value
st.write("Processed Results Table (Polygons):")
st.dataframe(result_df[['Location Name', 'Calculated Value']])
# Generate the dynamic filename
filename = f"{main_selection}_{sub_selection}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{shape_type}.csv"
# Convert results to DataFrame for download
st.download_button(
label="Download results as CSV",
data=result_df.to_csv(index=False).encode('utf-8'),
file_name=filename,
mime='text/csv'
)
|