Spaces:
Running
Running
import streamlit as st | |
import json | |
import ee | |
import os | |
import pandas as pd | |
import geopandas as gpd | |
from datetime import datetime | |
import leafmap.foliumap as leafmap | |
# Set up the page layout | |
st.set_page_config(layout="wide") | |
# Custom button styling | |
m = st.markdown( | |
""" | |
<style> | |
div.stButton > button:first-child { | |
background-color: #006400; | |
color:#ffffff; | |
} | |
</style>""", | |
unsafe_allow_html=True, | |
) | |
# # Logo | |
# st.write( | |
# f""" | |
# <div style="display: flex; justify-content: space-between; align-items: center;"> | |
# <img src="https://huggingface.co/spaces/SustainabilityLabIITGN/NDVI_PERG/resolve/main/Final_IITGN-Logo-symmetric-Color.png" style="width: 10%; margin-right: auto;"> | |
# <img src="https://huggingface.co/spaces/SustainabilityLabIITGN/NDVI_PERG/resolve/main/IFS.jpg" style="width: 10%; margin-left: auto;"> | |
# </div> | |
# """, | |
# unsafe_allow_html=True, | |
# ) | |
# Authenticate and initialize Earth Engine | |
earthengine_credentials = os.environ.get("EE_Authentication") | |
# Initialize Earth Engine with secret credentials | |
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True) | |
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f: | |
f.write(earthengine_credentials) | |
ee.Initialize(project='ee-yashsacisro24') | |
# Load Sentinel dataset options from JSON file | |
with open("sentinel_datasets.json") as f: | |
data = json.load(f) | |
# Display the title and dataset selection | |
st.title("Sentinel Dataset") | |
# Select dataset category and subcategory | |
main_selection = st.selectbox("Select Sentinel Dataset Category", list(data.keys())) | |
if main_selection: | |
sub_options = data[main_selection]["sub_options"] | |
sub_selection = st.selectbox("Select Specific Dataset ID", list(sub_options.keys())) | |
# Earth Engine Index Calculator Section | |
st.header("Earth Engine Index Calculator") | |
# Choose Index or Custom Formula | |
index_choice = st.selectbox("Select an Index or Enter Custom Formula", ['NDVI', 'NDWI', 'Average NO₂', 'Custom Formula']) | |
# Initialize custom_formula variable | |
custom_formula = "" | |
# Display corresponding formula based on the index selected | |
if index_choice == 'NDVI': | |
st.write("Formula for NDVI: NDVI = (B8 - B4) / (B8 + B4)") | |
elif index_choice == 'NDWI': | |
st.write("Formula for NDWI: NDWI = (B3 - B8) / (B3 + B8)") | |
elif index_choice == 'Average NO₂': | |
st.write("Formula for Average NO₂: Average NO₂ = Mean(NO2 band)") | |
elif index_choice == 'Custom Formula': | |
custom_formula = st.text_input("Enter Custom Formula (e.g., 'B5 - B4 / B5 + B4')") | |
st.write(f"Custom Formula: {custom_formula}") # Display the custom formula after the user inputs it | |
# Function to read points from CSV | |
def read_csv(file_path): | |
df = pd.read_csv(file_path) | |
return df | |
# Function to read points from GeoJSON | |
def read_geojson(file_path): | |
gdf = gpd.read_file(file_path) | |
return gdf | |
# Function to read points from KML | |
def read_kml(file_path): | |
gdf = gpd.read_file(file_path, driver='KML') | |
return gdf | |
# Ask user whether they want to process 'Point' or 'Polygon' data | |
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"]) | |
# Ask user to upload a file based on shape type | |
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"]) | |
# Date Input for Start and End Dates | |
start_date = st.date_input("Start Date", value=pd.to_datetime('2020-01-01')) | |
end_date = st.date_input("End Date", value=pd.to_datetime('2020-12-31')) | |
# Convert start_date and end_date to string format for Earth Engine | |
start_date_str = start_date.strftime('%Y-%m-%d') | |
end_date_str = end_date.strftime('%Y-%m-%d') | |
# Initialize session state for storing results if not already done | |
if 'results' not in st.session_state: | |
st.session_state.results = [] | |
if 'last_params' not in st.session_state: | |
st.session_state.last_params = {} | |
if 'map_data' not in st.session_state: | |
st.session_state.map_data = None # Initialize map_data | |
# Function to check if parameters have changed | |
def parameters_changed(): | |
return ( | |
st.session_state.last_params.get('main_selection') != main_selection or | |
st.session_state.last_params.get('sub_selection') != sub_selection or | |
st.session_state.last_params.get('index_choice') != index_choice or | |
st.session_state.last_params.get('start_date_str') != start_date_str or | |
st.session_state.last_params.get('end_date_str') != end_date_str | |
) | |
# If parameters have changed, reset the results | |
if parameters_changed(): | |
st.session_state.results = [] # Clear the previous results | |
# Update the last parameters to the current ones | |
st.session_state.last_params = { | |
'main_selection': main_selection, | |
'sub_selection': sub_selection, | |
'index_choice': index_choice, | |
'start_date_str': start_date_str, | |
'end_date_str': end_date_str | |
} | |
# Function to perform index calculations | |
def calculate_ndvi(image, geometry): | |
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI') | |
result = ndvi.reduceRegion( | |
reducer=ee.Reducer.mean(), | |
geometry=geometry, | |
scale=30 | |
) | |
return result.get('NDVI') | |
def calculate_ndwi(image, geometry): | |
ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI') | |
result = ndwi.reduceRegion( | |
reducer=ee.Reducer.mean(), | |
geometry=geometry, | |
scale=30 | |
) | |
return result.get('NDWI') | |
def calculate_avg_no2_sentinel5p(image, geometry): | |
no2 = image.select('NO2').reduceRegion( | |
reducer=ee.Reducer.mean(), | |
geometry=geometry, | |
scale=1000 | |
).get('NO2') | |
return no2 | |
def calculate_custom_formula(image, geometry, formula): | |
result = image.expression(formula).rename('Custom Index').reduceRegion( | |
reducer=ee.Reducer.mean(), | |
geometry=geometry, | |
scale=30 | |
) | |
return result.get('Custom Index') | |
# Process each point | |
if file_upload: | |
locations_df = None # Initialize locations_df to None | |
polygons_df = None # Initialize polygons_df to None | |
file_extension = os.path.splitext(file_upload.name)[1].lower() | |
# Read file based on shape type | |
if shape_type == 'Point': | |
if file_extension == '.csv': | |
locations_df = read_csv(file_upload) | |
elif file_extension == '.geojson': | |
locations_df = read_geojson(file_upload) | |
elif file_extension == '.kml': | |
locations_df = read_kml(file_upload) | |
else: | |
st.error("Unsupported file type. Please upload a CSV, GeoJSON, or KML file for points.") | |
elif shape_type == 'Polygon': | |
if file_extension == '.geojson': | |
polygons_df = read_geojson(file_upload) | |
elif file_extension == '.kml': | |
polygons_df = read_kml(file_upload) | |
else: | |
st.error("Unsupported file type. Please upload a GeoJSON or KML file for polygons.") | |
if locations_df is not None: | |
# Display a preview of the points data | |
st.write("Preview of the uploaded points data:") | |
st.dataframe(locations_df.head()) | |
# Create a LeafMap object to display the points | |
m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10) | |
# Add points to the map | |
for _, row in locations_df.iterrows(): | |
m.add_marker(location=[row['latitude'], row['longitude']], popup=row.get('name', 'No Name')) | |
# Display map | |
st.write("Map of Uploaded Points:") | |
m.to_streamlit() | |
# Store the map in session_state | |
st.session_state.map_data = m | |
if polygons_df is not None: | |
# Display a preview of the polygons data | |
st.write("Preview of the uploaded polygons data:") | |
st.dataframe(polygons_df.head()) | |
# Create a LeafMap object to display the polygons | |
m = leafmap.Map(center=[polygons_df.geometry.centroid.y.mean(), polygons_df.geometry.centroid.x.mean()], zoom=4) | |
# Plot polygons on the map | |
for _, row in polygons_df.iterrows(): | |
m.add_geojson(geojson=row['geometry'].__geo_interface__) | |
# Display map | |
st.write("Map of Uploaded Polygons:") | |
m.to_streamlit() | |
# Store the map in session_state | |
st.session_state.map_data = m | |
# Process each point | |
if locations_df is not None: | |
for idx, row in locations_df.iterrows(): | |
latitude = row['latitude'] | |
longitude = row['longitude'] | |
location_name = row.get('name', f"Location_{idx}") | |
# Define the region of interest (ROI) | |
roi = ee.Geometry.Point([longitude, latitude]) | |
# Load Sentinel-2 image collection | |
collection = ee.ImageCollection(sub_options[sub_selection]) \ | |
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \ | |
.filterBounds(roi) | |
# Check if the collection has images for the selected date range | |
image_count = collection.size().getInfo() | |
if image_count == 0: | |
st.warning(f"No images found for {location_name}.") | |
else: | |
st.write(f"Found {image_count} images for {location_name}.") | |
image = collection.first() | |
# Perform the calculation based on user selection | |
result = None | |
if index_choice == 'NDVI': | |
result = calculate_ndvi(image, roi) | |
elif index_choice == 'NDWI': | |
result = calculate_ndwi(image, roi) | |
elif index_choice == 'Average NO₂': | |
if 'NO2' in image.bandNames().getInfo(): | |
result = calculate_avg_no2_sentinel5p(image, roi) | |
else: | |
st.warning(f"No NO2 band found for {location_name}. Please use Sentinel-5P for NO₂ data.") | |
elif index_choice == 'Custom Formula' and custom_formula: | |
result = calculate_custom_formula(image, roi, custom_formula) | |
if result is not None: | |
# Only store the numeric value (not the dictionary structure) | |
calculated_value = result.getInfo() # Get the numeric value | |
# Store the result in session state | |
st.session_state.results.append({ | |
'Location Name': location_name, | |
'Latitude': latitude, | |
'Longitude': longitude, | |
'Calculated Value': calculated_value | |
}) | |
# After processing, show the results | |
if st.session_state.results: | |
# Convert the results to a DataFrame for better visualization | |
result_df = pd.DataFrame(st.session_state.results) | |
# Show the results in a table format | |
st.write("Processed Results Table:") | |
st.dataframe(result_df[['Location Name', 'Latitude', 'Longitude', 'Calculated Value']]) | |
# Allow downloading of the results as CSV | |
st.download_button( | |
label="Download results as CSV", | |
data=result_df.to_csv(index=False).encode('utf-8'), | |
file_name="calculated_results.csv", | |
mime='text/csv' | |
) | |