SATRANG / app.py
YashMK89's picture
update app.py
f86a704 verified
raw
history blame
19.9 kB
import streamlit as st
import json
import ee
import os
import pandas as pd
import geopandas as gpd
from datetime import datetime
import leafmap.foliumap as leafmap
import re
# Set up the page layout
st.set_page_config(layout="wide")
# Custom button styling
m = st.markdown(
"""
<style>
div.stButton > button:first-child {
background-color: #006400;
color:#ffffff;
}
</style>""",
unsafe_allow_html=True,
)
# Logo
st.write(
f"""
<div style="display: flex; justify-content: space-between; align-items: center;">
<img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/ISRO_Logo.png" style="width: 20%; margin-right: auto;">
<img src="https://huggingface.co/spaces/YashMK89/GEE_Calculator/resolve/main/SAC_Logo.png" style="width: 20%; margin-left: auto;">
</div>
""",
unsafe_allow_html=True,
)
# Title
st.markdown(
f"""
<h1 style="text-align: center;">Precision Analysis for Vegetation, Water, and Air Quality</h1>
""",
unsafe_allow_html=True,
)
st.write("<h2><div style='text-align: center;'>User Inputs</div></h2>", unsafe_allow_html=True)
# Authenticate and initialize Earth Engine
earthengine_credentials = os.environ.get("EE_Authentication")
# Initialize Earth Engine with secret credentials
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
f.write(earthengine_credentials)
ee.Initialize(project='ee-yashsacisro24')
# Load Sentinel dataset options from JSON file
with open("sentinel_datasets.json") as f:
data = json.load(f)
# Display the title and dataset selection
st.title("Sentinel Dataset")
# Select dataset category and subcategory (case-insensitive selection)
main_selection = st.selectbox("Select Sentinel Dataset Category", list(data.keys()))
if main_selection:
sub_options = data[main_selection]["sub_options"]
sub_selection = st.selectbox("Select Specific Dataset ID", list(sub_options.keys()))
# Earth Engine Index Calculator Section
st.header("Earth Engine Index Calculator")
# Choose Index or Custom Formula (case-insensitive)
index_choice = st.selectbox("Select an Index or Enter Custom Formula", ['NDVI', 'NDWI', 'Average NO₂', 'Custom Formula'])
# Initialize custom_formula variable
custom_formula = ""
# Display corresponding formula based on the index selected (case-insensitive)
if index_choice.lower() == 'ndvi':
st.write("Formula for NDVI: NDVI = (B8 - B4) / (B8 + B4)")
elif index_choice.lower() == 'ndwi':
st.write("Formula for NDWI: NDWI = (B3 - B8) / (B3 + B8)")
elif index_choice.lower() == 'average no₂':
st.write("Formula for Average NO₂: Average NO₂ = Mean(NO2 band)")
elif index_choice.lower() == 'custom formula':
custom_formula = st.text_input("Enter Custom Formula (e.g., '(B5 - B4) / (B5 + B4)')")
st.write(f"Custom Formula: {custom_formula}") # Display the custom formula after the user inputs it
# Reducer selection
reducer_choice = st.selectbox(
"Select Reducer",
['mean', 'sum', 'median', 'min', 'max', 'count'],
index=0 # Default to 'mean'
)
# Function to check if the polygon geometry is valid and convert it to the correct format
def convert_to_ee_geometry(geometry):
if geometry.is_valid:
geojson = geometry.__geo_interface__
return ee.Geometry(geojson)
else:
raise ValueError("Invalid geometry: The polygon geometry is not valid.")
# Function to read points from CSV
def read_csv(file_path):
df = pd.read_csv(file_path)
return df
# Function to read points from GeoJSON
def read_geojson(file_path):
gdf = gpd.read_file(file_path)
return gdf
# Function to read points from KML
def read_kml(file_path):
gdf = gpd.read_file(file_path, driver='KML')
return gdf
# Ask user whether they want to process 'Point' or 'Polygon' data (case-insensitive)
shape_type = st.selectbox("Do you want to process 'Point' or 'Polygon' data?", ["Point", "Polygon"])
# Ask user to upload a file based on shape type (case-insensitive)
file_upload = st.file_uploader(f"Upload your {shape_type} data (CSV, GeoJSON, KML)", type=["csv", "geojson", "kml"])
# Date Input for Start and End Dates
start_date = st.date_input("Start Date", value=pd.to_datetime('2020-01-01'))
end_date = st.date_input("End Date", value=pd.to_datetime('2020-12-31'))
# Convert start_date and end_date to string format for Earth Engine
start_date_str = start_date.strftime('%Y-%m-%d')
end_date_str = end_date.strftime('%Y-%m-%d')
# Initialize session state for storing results if not already done
if 'results' not in st.session_state:
st.session_state.results = []
if 'last_params' not in st.session_state:
st.session_state.last_params = {}
if 'map_data' not in st.session_state:
st.session_state.map_data = None # Initialize map_data
# Function to check if parameters have changed
def parameters_changed():
return (
st.session_state.last_params.get('main_selection') != main_selection or
st.session_state.last_params.get('sub_selection') != sub_selection or
st.session_state.last_params.get('index_choice') != index_choice or
st.session_state.last_params.get('start_date_str') != start_date_str or
st.session_state.last_params.get('end_date_str') != end_date_str or
st.session_state.last_params.get('shape_type') != shape_type or
st.session_state.last_params.get('file_upload') != file_upload
)
# If parameters have changed, reset the results
if parameters_changed():
st.session_state.results = [] # Clear the previous results
st.session_state.last_params = {
'main_selection': main_selection,
'sub_selection': sub_selection,
'index_choice': index_choice,
'start_date_str': start_date_str,
'end_date_str': end_date_str,
'shape_type': shape_type,
'file_upload': file_upload
}
# Function to get the corresponding reducer based on user input
def get_reducer(reducer_name):
"""
Map user-friendly reducer names to Earth Engine reducer objects.
Args:
reducer_name (str): The name of the reducer (e.g., 'mean', 'sum', 'median').
Returns:
ee.Reducer: The corresponding Earth Engine reducer.
"""
reducers = {
'mean': ee.Reducer.mean(),
'sum': ee.Reducer.sum(),
'median': ee.Reducer.median(),
'min': ee.Reducer.min(),
'max': ee.Reducer.max(),
'count': ee.Reducer.count(),
}
# Default to 'mean' if the reducer_name is not recognized
return reducers.get(reducer_name.lower(), ee.Reducer.mean())
# Function to calculate NDVI
def calculate_ndvi(image, geometry):
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
# Perform reduction on the region with the selected reducer
result = ndvi.reduceRegion(
reducer=get_reducer(reducer_choice),
geometry=geometry,
scale=30
)
# Output debugging information
result_value = result.get('NDVI')
try:
calculated_value = result_value.getInfo()
st.write(f"NDVI calculation using {reducer_choice}: {calculated_value}")
except Exception as e:
st.error(f"Error retrieving NDVI result: {e}")
return result_value
# Function to calculate NDWI
def calculate_ndwi(image, geometry):
ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI')
result = ndwi.reduceRegion(
reducer=get_reducer(reducer_choice),
geometry=geometry,
scale=30
)
# Output debugging information
result_value = result.get('NDWI')
try:
calculated_value = result_value.getInfo()
st.write(f"NDVI calculation using {reducer_choice}: {calculated_value}")
except Exception as e:
st.error(f"Error retrieving NDVI result: {e}")
return result_value
# Function to calculate Average NO₂ for Sentinel-5P
def calculate_avg_no2_sentinel5p(image, geometry):
no2 = image.select('NO2').reduceRegion(
reducer=get_reducer(reducer_choice),
geometry=geometry,
scale=1000
)
# Output debugging information
result_value = result.get('NDVI')
try:
calculated_value = result_value.getInfo()
st.write(f"NDVI calculation using {reducer_choice}: {calculated_value}")
except Exception as e:
st.error(f"Error retrieving NDVI result: {e}")
return result_value
# Function to calculate Custom Formula
def calculate_custom_formula(image, geometry, formula, scale=30):
"""
Calculate a custom formula on an image and return the result for a given geometry,
using a user-specified reducer.
"""
# Dynamically generate the dictionary of band references from the image
band_names = image.bandNames().getInfo()
band_dict = {band: image.select(band) for band in band_names}
# Use the formula with the bands in the image
result_image = image.expression(formula, band_dict).rename('CustomResult')
# Reduce the region to get the result based on the specified reducer
result = result_image.reduceRegion(
reducer=get_reducer(reducer_choice),
geometry=geometry,
scale=scale
)
# Output debugging information
result_value = result.get('CustomResult')
try:
calculated_value = result_value.getInfo()
st.write(f"NDVI calculation using {reducer_choice}: {calculated_value}")
except Exception as e:
st.error(f"Error retrieving NDVI result: {e}")
return result_value
# Function to get the most recent image from the collection
def get_most_recent_image(image_collection):
image = image_collection.sort('system:time_start', False).first()
return image
# Function to process the custom formula
def process_custom_formula(image, geometry, formula):
return calculate_custom_formula(image, geometry, formula)
locations_df = None # Initialize locations_df to None
polygons_df = None # Ensure polygons_df is initialized at the beginning
# Process each point (with additional checks for file validity)
# Check the shape type and assign polygons_df only for Polygon data
if file_upload:
# locations_df = None # Initialize locations_df to None
# polygons_df = None # Ensure polygons_df is initialized at the beginning
file_extension = os.path.splitext(file_upload.name)[1].lower()
# Read file based on shape type
if shape_type == 'Point':
if file_extension == '.csv':
locations_df = read_csv(file_upload)
elif file_extension == '.geojson':
locations_df = read_geojson(file_upload)
elif file_extension == '.kml':
locations_df = read_kml(file_upload)
else:
st.error("Unsupported file type. Please upload a CSV, GeoJSON, or KML file for points.")
elif shape_type == 'Polygon':
if file_extension == '.geojson':
polygons_df = read_geojson(file_upload)
elif file_extension == '.kml':
polygons_df = read_kml(file_upload)
else:
st.error("Unsupported file type. Please upload a GeoJSON or KML file for polygons.")
if locations_df is not None and not locations_df.empty:
# Ensure the necessary columns exist in the dataframe
if 'latitude' not in locations_df.columns or 'longitude' not in locations_df.columns:
st.error("Uploaded file is missing required 'latitude' or 'longitude' columns.")
else:
# Display a preview of the points data
st.write("Preview of the uploaded points data:")
st.dataframe(locations_df.head())
# Create a LeafMap object to display the points
m = leafmap.Map(center=[locations_df['latitude'].mean(), locations_df['longitude'].mean()], zoom=10)
# Add points to the map using a loop
for _, row in locations_df.iterrows():
latitude = row['latitude']
longitude = row['longitude']
# Check if latitude or longitude are NaN and skip if they are
if pd.isna(latitude) or pd.isna(longitude):
continue # Skip this row and move to the next one
m.add_marker(location=[latitude, longitude], popup=row.get('name', 'No Name'))
# Display map
st.write("Map of Uploaded Points:")
m.to_streamlit()
# Store the map in session_state
st.session_state.map_data = m
# Process each point for index calculation
for idx, row in locations_df.iterrows():
latitude = row['latitude']
longitude = row['longitude']
location_name = row.get('name', f"Location_{idx}")
# Skip processing if latitude or longitude is NaN
if pd.isna(latitude) or pd.isna(longitude):
continue # Skip this row and move to the next one
# Define the region of interest (ROI)
roi = ee.Geometry.Point([longitude, latitude])
# Load Sentinel-2 image collection
collection = ee.ImageCollection(sub_options[sub_selection]) \
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
.filterBounds(roi)
image = get_most_recent_image(collection)
if not image:
st.warning(f"No images found for {location_name}.")
else:
st.write(f"Found images for {location_name}.")
# Perform the calculation based on user selection
# Perform the calculation based on user selection
result = None
if index_choice == 'NDVI':
result = calculate_ndvi(image, roi)
elif index_choice == 'NDWI':
result = calculate_ndwi(image, roi)
elif index_choice == 'Average NO₂':
if 'NO2' in image.bandNames().getInfo():
result = calculate_avg_no2_sentinel5p(image, roi)
else:
st.warning(f"No NO2 band found for {location_name}. Please use Sentinel-5P for NO₂ data.")
elif index_choice.lower() == 'custom formula' and custom_formula:
result = process_custom_formula(image, roi, custom_formula)
# Validate result before using getInfo
if result is not None:
calculated_value = None # Initialize the calculated_value as None
# Check if the result is a dictionary
if isinstance(result, dict):
# Extract the value using the appropriate key (adjust the key name as needed)
calculated_value = result.get('CustomResult', None) # Replace 'CustomResult' if using NDVI, NDWI, etc.
else:
try:
# If it's an Earth Engine object, get the value using getInfo
calculated_value = result.getInfo()
except Exception as e:
st.error(f"Error getting result info: {e}")
# If a valid calculated_value is found, append the result to session_state
if calculated_value is not None:
st.session_state.results.append({
'Location Name': location_name,
'Latitude': latitude,
'Longitude': longitude,
'Calculated Value': calculated_value
})
else:
st.warning(f"No value calculated for {location_name}.")
else:
st.warning(f"No value calculated for {location_name}.")
# Check if polygons_df is populated for polygons
if polygons_df is not None:
st.write("Preview of the uploaded polygons data:")
st.dataframe(polygons_df.head())
m = leafmap.Map(center=[polygons_df.geometry.centroid.y.mean(), polygons_df.geometry.centroid.x.mean()], zoom=10)
for _, row in polygons_df.iterrows():
polygon = row['geometry']
if polygon.is_valid:
gdf = gpd.GeoDataFrame([row], geometry=[polygon], crs=polygons_df.crs)
m.add_gdf(gdf=gdf, layer_name=row.get('name', 'Unnamed Polygon'))
st.write("Map of Uploaded Polygons:")
m.to_streamlit()
st.session_state.map_data = m
for idx, row in polygons_df.iterrows():
polygon = row['geometry']
location_name = row.get('name', f"Polygon_{idx}")
try:
roi = convert_to_ee_geometry(polygon)
except ValueError as e:
st.error(str(e))
continue
collection = ee.ImageCollection(sub_options[sub_selection]) \
.filterDate(ee.Date(start_date_str), ee.Date(end_date_str)) \
.filterBounds(roi)
image = get_most_recent_image(collection)
if not image:
st.warning(f"No images found for {location_name}.")
else:
st.write(f"Found an image for {location_name}.")
result = None
if index_choice.lower() == 'ndvi':
result = calculate_ndvi(image, roi)
elif index_choice.lower() == 'ndwi':
result = calculate_ndwi(image, roi)
elif index_choice.lower() == 'average no₂':
if 'NO2' in image.bandNames().getInfo():
result = calculate_avg_no2_sentinel5p(image, roi)
else:
st.warning(f"No NO2 band found for {location_name}. Please use Sentinel-5P for NO₂ data.")
elif index_choice.lower() == 'custom formula' and custom_formula:
result = process_custom_formula(image, roi, custom_formula)
if result is not None:
# Initialize the calculated_value as None
calculated_value = None
# Check if the result is a dictionary (e.g., custom formula result)
if isinstance(result, dict) and 'CustomResult' in result:
calculated_value = result['CustomResult'] # Extract the numeric value from the dictionary
# If the result is a numeric value (e.g., NDVI, NDWI, or NO2)
elif isinstance(result, (int, float)):
calculated_value = result
# If a valid calculated_value is found, append the result to session_state
if calculated_value is not None:
st.session_state.results.append({
'Location Name': location_name,
'Calculated Value': calculated_value
})
# After processing, show the results
if st.session_state.results:
result_df = pd.DataFrame(st.session_state.results)
if shape_type.lower() == 'point':
st.write("Processed Results Table (Points):")
st.dataframe(result_df[['Location Name', 'Latitude', 'Longitude', 'Calculated Value']])
else:
st.write("Processed Results Table (Polygons):")
st.dataframe(result_df[['Location Name', 'Calculated Value']])
filename = f"{main_selection}_{sub_selection}_{start_date.strftime('%Y/%m/%d')}_{end_date.strftime('%Y/%m/%d')}_{shape_type}.csv"
st.download_button(
label="Download results as CSV",
data=result_df.to_csv(index=False).encode('utf-8'),
file_name=filename,
mime='text/csv'
)