File size: 7,502 Bytes
5545d25
3b5c038
5545d25
 
 
 
 
 
3b5c038
5545d25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11961e0
 
5545d25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b5c038
 
 
 
5545d25
 
5ab9924
5545d25
3b5c038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5545d25
11961e0
5545d25
 
 
 
 
32ee84e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b5c038
5545d25
11961e0
32ee84e
11961e0
32ee84e
11961e0
 
 
 
 
 
 
5545d25
11961e0
 
5545d25
11961e0
 
 
 
 
 
 
 
 
 
 
 
 
5545d25
32ee84e
 
 
 
 
11961e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5545d25
 
3b5c038
 
5545d25
 
 
 
 
 
 
 
11961e0
 
 
 
3b5c038
 
 
3727315
 
3b5c038
 
 
 
 
 
 
 
5545d25
 
11961e0
5ab9924
3b5c038
5ab9924
 
 
3b5c038
 
 
5ab9924
3b5c038
5ab9924
5545d25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11961e0
5545d25
 
 
5ab9924
 
 
11961e0
 
 
5545d25
 
 
 
 
 
 
 
 
 
11961e0
5545d25
 
 
 
3b5c038
 
11961e0
3b5c038
 
5545d25
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import sys
import re

from importlib.metadata import version

import evaluate
import polars as pl
import gradio as gr
from natsort import natsorted

# Load evaluators
wer = evaluate.load("wer")
cer = evaluate.load("cer")

# Config
concurrency_limit = 5

title = "Evaluate ASR Outputs"

# https://www.tablesgenerator.com/markdown_tables
authors_table = """
## Authors

Follow them on social networks and **contact** if you need any help or have any questions:

| <img src="https://avatars.githubusercontent.com/u/7875085?v=4" width="100"> **Yehor Smoliakov** |
|-------------------------------------------------------------------------------------------------|
| https://t.me/smlkw in Telegram                                                                  |
| https://x.com/yehor_smoliakov at X                                                              |
| https://github.com/egorsmkv at GitHub                                                           |
| https://huggingface.co/Yehor at Hugging Face                                                    |
| or use [email protected]                                                                       |
""".strip()

examples = [
    ["evaluation_results.jsonl", True, False, False],
    ["evaluation_results_batch.jsonl", True, False, True],
]

description_head = f"""
# {title}

## Overview

Upload a JSONL file generated by the ASR model.
""".strip()

description_foot = f"""
{authors_table}
""".strip()

metrics_value = """
Metrics will appear here.
""".strip()

tech_env = f"""
#### Environment

- Python: {sys.version}
""".strip()

tech_libraries = f"""
#### Libraries

- evaluate: {version("evaluate")}
- gradio: {version("gradio")}
- jiwer: {version("jiwer")}
- polars: {version("polars")}
""".strip()


def clean_value(x):
    s = (
        x.replace("’", "'")
        .strip()
        .lower()
        .replace(":", " ")
        .replace(",", " ")
        .replace(".", " ")
        .replace("?", " ")
        .replace("!", " ")
        .replace("–", " ")
        .replace("«", " ")
        .replace("»", " ")
        .replace("—", " ")
        .replace("…", " ")
        .replace("/", " ")
        .replace("\\", " ")
        .replace("(", " ")
        .replace(")", " ")
        .replace("́", "")
        .replace('"', " ")
    )

    s = re.sub(r" +", " ", s)

    s = s.strip()

    # print(s)

    return s


def inference(file_name, _clear_punctuation, _show_chars, _batch_mode):
    if not file_name:
        raise gr.Error("Please paste your JSON file.")

    df = pl.read_ndjson(file_name)

    required_columns = [
        "filename",
        "inference_start",
        "inference_end",
        "inference_total",
        "duration",
        "reference",
        "prediction",
    ]
    required_columns_batch = [
        "inference_start",
        "inference_end",
        "inference_total",
        "filenames",
        "durations",
        "references",
        "predictions",
    ]

    inference_seconds = df["inference_total"].sum()

    if _batch_mode:
        if not all(col in df.columns for col in required_columns_batch):
            raise gr.Error(
                f"Please provide a JSONL file with the following columns: {required_columns_batch}"
            )

        duration_seconds = 0
        for durations in df["durations"]:
            duration_seconds += durations.sum()

        rtf = inference_seconds / duration_seconds

        references_batch = df["references"]
        predictions_batch = df["predictions"]

        predictions = []
        for prediction in predictions_batch:
            if _clear_punctuation:
                prediction = prediction.map_elements(
                    clean_value, return_dtype=pl.String
                )
                predictions.extend(prediction)
            else:
                predictions.extend(prediction)

        references = []
        for reference in references_batch:
            references.extend(reference)
    else:
        if not all(col in df.columns for col in required_columns):
            raise gr.Error(
                f"Please provide a JSONL file with the following columns: {required_columns}"
            )

        duration_seconds = df["duration"].sum()

        rtf = inference_seconds / duration_seconds

        references = df["reference"]

        if _clear_punctuation:
            predictions = df["prediction"].map_elements(
                clean_value, return_dtype=pl.String
            )
        else:
            predictions = df["prediction"]

    n_predictions = len(predictions)
    n_references = len(references)

    # Evaluate
    wer_value = round(wer.compute(predictions=predictions, references=references), 4)
    cer_value = round(cer.compute(predictions=predictions, references=references), 4)

    inference_time = inference_seconds
    audio_duration = duration_seconds

    rtf = inference_time / audio_duration

    results = []

    results.append(
        f"- Number of references / predictions: {n_references} / {n_predictions}"
    )
    results.append(f"")
    results.append(f"- WER: {wer_value} metric, {round(wer_value * 100, 4)}%")
    results.append(f"- CER: {cer_value} metric, {round(cer_value * 100, 4)}%")
    results.append("")
    results.append(f"- Accuracy on words: {round(100 - 100 * wer_value, 4)}%")
    results.append(f"- Accuracy on chars: {round(100 - 100 * cer_value, 4)}%")
    results.append("")
    results.append(
        f"- Inference time: {round(inference_time, 4)} seconds, {round(inference_time / 60, 4)} mins, {round(inference_time / 60 / 60, 4)} hours"
    )
    results.append(
        f"- Audio duration: {round(audio_duration, 4)} seconds, {round(audio_duration / 60 / 60, 4)} hours"
    )
    results.append("")
    results.append(f"- RTF: {round(rtf, 4)}")

    if _show_chars:
        all_chars = set()
        for pred in predictions:
            for c in pred:
                all_chars.add(c)

        sorted_chars = natsorted(list(all_chars))

        results.append("")
        results.append(f"Chars in predictions:")
        results.append(f"{sorted_chars}")

    return "\n".join(results)


demo = gr.Blocks(
    title=title,
    analytics_enabled=False,
    theme=gr.themes.Base(),
)

with demo:
    gr.Markdown(description_head)

    gr.Markdown("## Usage")

    with gr.Row():
        with gr.Column():
            jsonl_file = gr.File(label="A JSONL file")

            clear_punctuation = gr.Checkbox(
                label="Clear punctuation, some chars and convert to lowercase",
            )
            show_chars = gr.Checkbox(
                label="Show chars in predictions",
            )
            batch_mode = gr.Checkbox(
                label="Use batch mode",
            )

        metrics = gr.Textbox(
            label="Metrics",
            placeholder=metrics_value,
            show_copy_button=True,
        )

    gr.Button("Calculate").click(
        inference,
        concurrency_limit=concurrency_limit,
        inputs=[jsonl_file, clear_punctuation, show_chars, batch_mode],
        outputs=metrics,
    )

    with gr.Row():
        gr.Examples(
            label="Choose an example",
            inputs=[jsonl_file, clear_punctuation, show_chars, batch_mode],
            examples=examples,
        )

    gr.Markdown(description_foot)

    gr.Markdown("### Gradio app uses:")
    gr.Markdown(tech_env)
    gr.Markdown(tech_libraries)

if __name__ == "__main__":
    demo.queue()
    demo.launch()