File size: 6,327 Bytes
441367e
 
 
 
8f2bb45
441367e
ff99877
441367e
 
8f2bb45
 
 
441367e
8f2bb45
441367e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff99877
 
441367e
 
 
 
 
 
 
8f2bb45
441367e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f2bb45
 
07b19d7
441367e
9581c74
441367e
 
 
8f2bb45
 
 
 
 
 
 
 
ff99877
441367e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1248b75
ff99877
 
 
1248b75
ff99877
 
 
441367e
ff99877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
441367e
ff99877
 
 
07b19d7
ff99877
 
 
 
 
 
 
 
8f2bb45
ff99877
 
 
 
 
 
 
 
9581c74
 
 
 
 
 
 
 
 
ff99877
 
 
8f2bb45
9581c74
ff99877
 
9581c74
ff99877
07b19d7
9581c74
 
 
441367e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9484ee3
 
 
441367e
 
 
 
 
 
 
 
 
 
ff99877
 
 
 
 
8f2bb45
 
f36f4ae
8f2bb45
441367e
 
ff99877
 
441367e
 
 
 
 
 
ff99877
441367e
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import sys

from importlib.metadata import version

import evaluate
import polars as pl
import polars_distance as pld
import gradio as gr

# Load evaluators
wer = evaluate.load("wer")
cer = evaluate.load("cer")

# Config
title = "See ASR Outputs"

# https://www.tablesgenerator.com/markdown_tables
authors_table = """
## Authors

Follow them on social networks and **contact** if you need any help or have any questions:

| <img src="https://avatars.githubusercontent.com/u/7875085?v=4" width="100"> **Yehor Smoliakov** |
|-------------------------------------------------------------------------------------------------|
| https://t.me/smlkw in Telegram                                                                  |
| https://x.com/yehor_smoliakov at X                                                              |
| https://github.com/egorsmkv at GitHub                                                           |
| https://huggingface.co/Yehor at Hugging Face                                                    |
| or use [email protected]                                                                       |
""".strip()

examples = [
    ["evaluation_results.jsonl", False, True, False],
    ["evaluation_results_batch.jsonl", True, False, False],
]

description_head = f"""
# {title}

## Overview

See generated JSONL files made by ASR models as a dataframe. Also, this app calculates WER and CER metrics for each row.
""".strip()

description_foot = f"""
{authors_table}
""".strip()

metrics_value = """
Metrics will appear here.
""".strip()

tech_env = f"""
#### Environment

- Python: {sys.version}
""".strip()

tech_libraries = f"""
#### Libraries

- gradio: {version("gradio")}
- jiwer: {version("jiwer")}
- evaluate: {version("evaluate")}
- pandas: {version("pandas")}
- polars: {version("polars")}
- polars-distance: {version("polars_distance")}
""".strip()


def compute_wer(prediction, reference):
    return round(wer.compute(predictions=[prediction], references=[reference]), 4)


def compute_cer(prediction, reference):
    return round(cer.compute(predictions=[prediction], references=[reference]), 4)


def process_file(file_name, _batch_mode, _calculate_distance, _calculate_metrics):
    if not file_name:
        raise gr.Error("Please paste your JSON file.")

    df = pl.read_ndjson(file_name)

    required_columns = [
        "filename",
        "inference_start",
        "inference_end",
        "inference_total",
        "duration",
        "reference",
        "prediction",
    ]
    required_columns_batch = [
        "inference_start",
        "inference_end",
        "inference_total",
        "filenames",
        "durations",
        "references",
        "predictions",
    ]

    if _batch_mode:
        if not all(col in df.columns for col in required_columns_batch):
            raise gr.Error(
                f"Please provide a JSONL file with the following columns: {required_columns_batch}"
            )
    else:
        if not all(col in df.columns for col in required_columns):
            raise gr.Error(
                f"Please provide a JSONL file with the following columns: {required_columns}"
            )

    # exclude inference_start, inference_end
    if _batch_mode:
        df = df.drop(
            ["inference_total", "inference_start", "inference_end", "filenames"]
        )
    else:
        df = df.drop(
            ["inference_total", "inference_start", "inference_end", "filename"]
        )

    if _batch_mode:
        predictions = []
        references = []
        for row in df.iter_rows(named=True):
            for idx, prediction in enumerate(row["predictions"]):
                reference = row["references"][idx]

                predictions.append(prediction)
                references.append(reference)

        df = pl.DataFrame(
            {
                "prediction": predictions,
                "reference": references,
            }
        )

    if _calculate_metrics:
        # Pandas is needed for applying functions
        df_pd = df.to_pandas()

        df_pd["wer"] = df_pd.apply(
            lambda row: compute_wer(row["prediction"], row["reference"]),
            axis=1,
        )
        df_pd["cer"] = df_pd.apply(
            lambda row: compute_cer(row["prediction"], row["reference"]),
            axis=1,
        )

        fields = [
            "wer",
            "cer",
            "prediction",
            "reference",
        ]

        df = pl.DataFrame(df_pd)
    else:
        fields = [
            "prediction",
            "reference",
        ]

    df = df.select(fields)

    if _calculate_distance:
        df = df.with_columns(
            pld.col("prediction").dist_str.levenshtein("reference").alias("distance")
        )

        # add distance to the first position
        fields = [
            "distance",
            *fields,
        ]

    df = df.select(fields)

    return df


demo = gr.Blocks(
    title=title,
    analytics_enabled=False,
    theme=gr.themes.Base(),
)

with demo:
    gr.Markdown(description_head)

    gr.Markdown("## Usage")

    with gr.Row():
        df = gr.DataFrame(
            label="Dataframe",
            show_search="search",
            show_row_numbers=True,
            pinned_columns=1,
        )

    with gr.Row():
        with gr.Column():
            jsonl_file = gr.File(label="A JSONL file")

            batch_mode = gr.Checkbox(
                label="Use batch mode",
            )

            calculate_distance = gr.Checkbox(
                label="Calculate Levenshtein distance",
                value=False,
            )

            calculate_metrics = gr.Checkbox(
                label="Calculate WER/CER metrics",
                value=False,
            )

    gr.Button("Show").click(
        process_file,
        inputs=[jsonl_file, batch_mode, calculate_distance, calculate_metrics],
        outputs=df,
    )

    with gr.Row():
        gr.Examples(
            label="Choose an example",
            inputs=[jsonl_file, batch_mode, calculate_distance, calculate_metrics],
            examples=examples,
        )

    gr.Markdown(description_foot)

    gr.Markdown("### Gradio app uses:")
    gr.Markdown(tech_env)
    gr.Markdown(tech_libraries)

if __name__ == "__main__":
    demo.queue()
    demo.launch()