Spaces:
Sleeping
Sleeping
import math | |
from collections import OrderedDict | |
from functools import partial | |
from typing import Any, Callable, List, NamedTuple, Optional, Tuple | |
import torch | |
from torch import nn, Tensor | |
import torch.nn.functional as F | |
from torch.hub import load_state_dict_from_url | |
from einops import rearrange | |
from ..utils import Conv2dNormActivation, MLP | |
from ..utils import _log_api_usage_once | |
weights = { | |
"vit_b_16": "https://download.pytorch.org/models/vit_b_16-c867db91.pth", | |
"vit_b_32": "https://download.pytorch.org/models/vit_b_32-d86f8d99.pth", | |
"vit_l_16": "https://download.pytorch.org/models/vit_l_16-852ce7e3.pth", | |
"vit_l_32": "https://download.pytorch.org/models/vit_l_32-c7638314.pth", | |
"vit_h_14": "https://download.pytorch.org/models/vit_h_14-6kbcf7eb.pth", | |
} | |
class ConvStemConfig(NamedTuple): | |
out_channels: int | |
kernel_size: int | |
stride: int | |
norm_layer: Callable[..., nn.Module] = nn.BatchNorm2d | |
activation_layer: Callable[..., nn.Module] = nn.ReLU | |
class MLPBlock(MLP): | |
"""Transformer MLP block.""" | |
_version = 2 | |
def __init__(self, in_dim: int, mlp_dim: int, dropout: float): | |
super().__init__(in_dim, [mlp_dim, in_dim], activation_layer=nn.GELU, inplace=None, dropout=dropout) | |
for m in self.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.xavier_uniform_(m.weight) | |
if m.bias is not None: | |
nn.init.normal_(m.bias, std=1e-6) | |
def _load_from_state_dict( | |
self, | |
state_dict, | |
prefix, | |
local_metadata, | |
strict, | |
missing_keys, | |
unexpected_keys, | |
error_msgs, | |
): | |
version = local_metadata.get("version", None) | |
if version is None or version < 2: | |
# Replacing legacy MLPBlock with MLP. See https://github.com/pytorch/vision/pull/6053 | |
for i in range(2): | |
for type in ["weight", "bias"]: | |
old_key = f"{prefix}linear_{i+1}.{type}" | |
new_key = f"{prefix}{3*i}.{type}" | |
if old_key in state_dict: | |
state_dict[new_key] = state_dict.pop(old_key) | |
super()._load_from_state_dict( | |
state_dict, | |
prefix, | |
local_metadata, | |
strict, | |
missing_keys, | |
unexpected_keys, | |
error_msgs, | |
) | |
class EncoderBlock(nn.Module): | |
"""Transformer encoder block.""" | |
def __init__( | |
self, | |
num_heads: int, | |
hidden_dim: int, | |
mlp_dim: int, | |
dropout: float, | |
attention_dropout: float, | |
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6), | |
): | |
super().__init__() | |
self.num_heads = num_heads | |
# Attention block | |
self.ln_1 = norm_layer(hidden_dim) | |
self.self_attention = nn.MultiheadAttention(hidden_dim, num_heads, dropout=attention_dropout, batch_first=True) | |
self.dropout = nn.Dropout(dropout) | |
# MLP block | |
self.ln_2 = norm_layer(hidden_dim) | |
self.mlp = MLPBlock(hidden_dim, mlp_dim, dropout) | |
def forward(self, input: Tensor): | |
torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}") | |
x = self.ln_1(input) | |
x, _ = self.self_attention(x, x, x, need_weights=False) | |
x = self.dropout(x) | |
x = x + input | |
y = self.ln_2(x) | |
y = self.mlp(y) | |
return x + y | |
class Encoder(nn.Module): | |
"""Transformer Model Encoder for sequence to sequence translation.""" | |
def __init__( | |
self, | |
num_h_patches: int, | |
num_w_patches: int, | |
num_layers: int, | |
num_heads: int, | |
hidden_dim: int, | |
mlp_dim: int, | |
dropout: float, | |
attention_dropout: float, | |
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6), | |
): | |
super().__init__() | |
self.num_h_patches = num_h_patches | |
self.num_w_patches = num_w_patches | |
# Note that batch_size is on the first dim because | |
# we have batch_first=True in nn.MultiAttention() by default | |
seq_length = num_h_patches * num_w_patches + 1 # +1 for the class token | |
self.pos_embedding = nn.Parameter(torch.empty(1, seq_length, hidden_dim).normal_(std=0.02)) # from BERT | |
self.dropout = nn.Dropout(dropout) | |
layers: OrderedDict[str, nn.Module] = OrderedDict() | |
for i in range(num_layers): | |
layers[f"encoder_layer_{i}"] = EncoderBlock( | |
num_heads, | |
hidden_dim, | |
mlp_dim, | |
dropout, | |
attention_dropout, | |
norm_layer, | |
) | |
self.layers = nn.Sequential(layers) | |
self.ln = norm_layer(hidden_dim) | |
def _get_pos_embedding(self, n_h: int, n_w: int) -> Tensor: | |
if n_h == self.num_h_patches and n_w == self.num_w_patches: | |
return self.pos_embedding | |
else: | |
pos_embedding = self.pos_embedding[:, 1:, :] | |
pos_embedding = rearrange(pos_embedding, "1 (h w) d -> 1 d h w", h=self.num_h_patches, w=self.num_w_patches) | |
pos_embedding = F.interpolate(pos_embedding, size=(n_h, n_w), mode="bicubic") | |
pos_embedding = rearrange(pos_embedding, "1 d h w -> 1 (h w) d") | |
return torch.cat([self.pos_embedding[:, :1, :], pos_embedding], dim=1) | |
def forward(self, input: Tensor, n_h: int, n_w: int) -> Tensor: | |
torch._assert(input.dim() == 3, f"Expected (batch_size, seq_length, hidden_dim) got {input.shape}") | |
input = input + self._get_pos_embedding(n_h, n_w) | |
return self.ln(self.layers(self.dropout(input))) | |
class VisionTransformer(nn.Module): | |
"""Vision Transformer as a feature extractor.""" | |
def __init__( | |
self, | |
image_size: int, | |
patch_size: int, | |
num_layers: int, | |
num_heads: int, | |
hidden_dim: int, | |
mlp_dim: int, | |
dropout: float = 0.0, | |
attention_dropout: float = 0.0, | |
# num_classes: int = 1000, # No need for the classification head as we only need the features | |
reduction: Optional[int] = None, | |
representation_size: Optional[int] = None, | |
norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6), | |
conv_stem_configs: Optional[List[ConvStemConfig]] = None, | |
): | |
super().__init__() | |
_log_api_usage_once(self) | |
torch._assert(image_size % patch_size == 0, "Input shape indivisible by patch size!") | |
self.image_size = image_size | |
self.patch_size = patch_size | |
self.hidden_dim = hidden_dim | |
self.mlp_dim = mlp_dim | |
self.attention_dropout = attention_dropout | |
self.dropout = dropout | |
# self.num_classes = num_classes | |
self.representation_size = representation_size | |
self.norm_layer = norm_layer | |
if conv_stem_configs is not None: | |
# As per https://arxiv.org/abs/2106.14881 | |
seq_proj = nn.Sequential() | |
prev_channels = 3 | |
for i, conv_stem_layer_config in enumerate(conv_stem_configs): | |
seq_proj.add_module( | |
f"conv_bn_relu_{i}", | |
Conv2dNormActivation( | |
in_channels=prev_channels, | |
out_channels=conv_stem_layer_config.out_channels, | |
kernel_size=conv_stem_layer_config.kernel_size, | |
stride=conv_stem_layer_config.stride, | |
norm_layer=conv_stem_layer_config.norm_layer, | |
activation_layer=conv_stem_layer_config.activation_layer, | |
), | |
) | |
prev_channels = conv_stem_layer_config.out_channels | |
seq_proj.add_module( | |
"conv_last", nn.Conv2d(in_channels=prev_channels, out_channels=hidden_dim, kernel_size=1) | |
) | |
self.conv_proj: nn.Module = seq_proj | |
else: | |
self.conv_proj = nn.Conv2d( | |
in_channels=3, out_channels=hidden_dim, kernel_size=patch_size, stride=patch_size | |
) | |
seq_length = (image_size // patch_size) ** 2 | |
# Add a class token | |
self.class_token = nn.Parameter(torch.zeros(1, 1, hidden_dim)) | |
seq_length += 1 | |
self.encoder = Encoder( | |
image_size // patch_size, | |
image_size // patch_size, | |
num_layers, | |
num_heads, | |
hidden_dim, | |
mlp_dim, | |
dropout, | |
attention_dropout, | |
norm_layer, | |
) | |
self.seq_length = seq_length | |
# heads_layers: OrderedDict[str, nn.Module] = OrderedDict() | |
# if representation_size is None: | |
# heads_layers["head"] = nn.Linear(hidden_dim, num_classes) | |
# else: | |
# heads_layers["pre_logits"] = nn.Linear(hidden_dim, representation_size) | |
# heads_layers["act"] = nn.Tanh() | |
# heads_layers["head"] = nn.Linear(representation_size, num_classes) | |
# self.heads = nn.Sequential(heads_layers) | |
if isinstance(self.conv_proj, nn.Conv2d): | |
# Init the patchify stem | |
fan_in = self.conv_proj.in_channels * self.conv_proj.kernel_size[0] * self.conv_proj.kernel_size[1] | |
nn.init.trunc_normal_(self.conv_proj.weight, std=math.sqrt(1 / fan_in)) | |
if self.conv_proj.bias is not None: | |
nn.init.zeros_(self.conv_proj.bias) | |
elif self.conv_proj.conv_last is not None and isinstance(self.conv_proj.conv_last, nn.Conv2d): | |
# Init the last 1x1 conv of the conv stem | |
nn.init.normal_( | |
self.conv_proj.conv_last.weight, mean=0.0, std=math.sqrt(2.0 / self.conv_proj.conv_last.out_channels) | |
) | |
if self.conv_proj.conv_last.bias is not None: | |
nn.init.zeros_(self.conv_proj.conv_last.bias) | |
# if hasattr(self.heads, "pre_logits") and isinstance(self.heads.pre_logits, nn.Linear): | |
# fan_in = self.heads.pre_logits.in_features | |
# nn.init.trunc_normal_(self.heads.pre_logits.weight, std=math.sqrt(1 / fan_in)) | |
# nn.init.zeros_(self.heads.pre_logits.bias) | |
# if isinstance(self.heads.head, nn.Linear): | |
# nn.init.zeros_(self.heads.head.weight) | |
# nn.init.zeros_(self.heads.head.bias) | |
self.encoder_reduction = self.patch_size | |
self.reduction = self.encoder_reduction if reduction is None else reduction | |
self.channels = hidden_dim | |
def _process_input(self, x: Tensor) -> Tuple[Tensor, int, int, int]: | |
# (n, c, h, w) -> (n, hidden_dim, n_h, n_w) | |
x = self.conv_proj(x) | |
n, _, n_h, n_w = x.shape | |
# (n, hidden_dim, n_h, n_w) -> (n, hidden_dim, (n_h * n_w)) | |
x = x.reshape(n, self.hidden_dim, n_h * n_w) | |
# (n, hidden_dim, (n_h * n_w)) -> (n, (n_h * n_w), hidden_dim) | |
# The self attention layer expects inputs in the format (N, S, E) | |
# where S is the source sequence length, N is the batch size, E is the | |
# embedding dimension | |
x = x.permute(0, 2, 1) | |
return x, n, n_h, n_w | |
def forward(self, x: Tensor) -> Tensor: | |
# Reshape and permute the input tensor | |
x, n, n_h, n_w = self._process_input(x) | |
# Expand the class token to the full batch | |
batch_class_token = self.class_token.expand(n, -1, -1) | |
x = torch.cat([batch_class_token, x], dim=1) | |
x = self.encoder(x, n_h, n_w) # Allows input image to be of any size. | |
# Classifier "token" as used by standard language architectures | |
# x = x[:, 0] | |
# x = self.heads(x) | |
x = x[:, 1:, :] | |
x = rearrange(x, "n (h w) d -> n d h w", h=n_h, w=n_w) | |
if self.encoder_reduction != self.reduction: | |
x = F.interpolate(x, scale_factor=self.encoder_reduction / self.reduction, mode="bilinear") | |
return x # To be consistent with timm models | |
def _vision_transformer( | |
patch_size: int, | |
num_layers: int, | |
num_heads: int, | |
hidden_dim: int, | |
mlp_dim: int, | |
weights: str, | |
**kwargs: Any, | |
) -> VisionTransformer: | |
image_size = kwargs.pop("image_size", 224) | |
model = VisionTransformer( | |
image_size=image_size, | |
patch_size=patch_size, | |
num_layers=num_layers, | |
num_heads=num_heads, | |
hidden_dim=hidden_dim, | |
mlp_dim=mlp_dim, | |
**kwargs, | |
) | |
if weights is not None: | |
weights = load_state_dict_from_url(weights, progress=kwargs.get("progress", True)) | |
missing_keys, unexpected_keys = model.load_state_dict(weights, strict=False) | |
if len(missing_keys) > 0: | |
print(f"Missing keys: {missing_keys}") | |
if len(unexpected_keys) > 0: | |
print(f"Unexpected keys: {unexpected_keys}") | |
return model | |
def interpolate_embeddings( | |
image_size: int, | |
patch_size: int, | |
pos_embedding: Tensor, | |
interpolation_mode: str = "bicubic", | |
) -> Tensor: | |
"""This function helps interpolate positional embeddings during checkpoint loading, | |
especially when you want to apply a pre-trained model on images with different resolution. | |
Args: | |
image_size (int): Image size of the new model. | |
patch_size (int): Patch size of the new model. | |
model_state (OrderedDict[str, Tensor]): State dict of the pre-trained model. | |
interpolation_mode (str): The algorithm used for upsampling. Default: bicubic. | |
reset_heads (bool): If true, not copying the state of heads. Default: False. | |
Returns: | |
Tensor: The interpolated positional embedding. | |
""" | |
# Shape of pos_embedding is (1, seq_length, hidden_dim) | |
n, seq_length, hidden_dim = pos_embedding.shape | |
if n != 1: | |
raise ValueError(f"Unexpected position embedding shape: {pos_embedding.shape}") | |
new_seq_length = (image_size // patch_size) ** 2 + 1 | |
# Need to interpolate the weights for the position embedding. | |
# We do this by reshaping the positions embeddings to a 2d grid, performing | |
# an interpolation in the (h, w) space and then reshaping back to a 1d grid. | |
if new_seq_length != seq_length: | |
# The class token embedding shouldn't be interpolated, so we split it up. | |
seq_length -= 1 | |
new_seq_length -= 1 | |
pos_embedding_token = pos_embedding[:, :1, :] | |
pos_embedding_img = pos_embedding[:, 1:, :] | |
# (1, seq_length, hidden_dim) -> (1, hidden_dim, seq_length) | |
pos_embedding_img = pos_embedding_img.permute(0, 2, 1) | |
seq_length_1d = int(math.sqrt(seq_length)) | |
if seq_length_1d * seq_length_1d != seq_length: | |
raise ValueError( | |
f"seq_length is not a perfect square! Instead got seq_length_1d * seq_length_1d = {seq_length_1d * seq_length_1d } and seq_length = {seq_length}" | |
) | |
# (1, hidden_dim, seq_length) -> (1, hidden_dim, seq_l_1d, seq_l_1d) | |
pos_embedding_img = pos_embedding_img.reshape(1, hidden_dim, seq_length_1d, seq_length_1d) | |
new_seq_length_1d = image_size // patch_size | |
# Perform interpolation. | |
# (1, hidden_dim, seq_l_1d, seq_l_1d) -> (1, hidden_dim, new_seq_l_1d, new_seq_l_1d) | |
new_pos_embedding_img = nn.functional.interpolate( | |
pos_embedding_img, | |
size=new_seq_length_1d, | |
mode=interpolation_mode, | |
) | |
# (1, hidden_dim, new_seq_l_1d, new_seq_l_1d) -> (1, hidden_dim, new_seq_length) | |
new_pos_embedding_img = new_pos_embedding_img.reshape(1, hidden_dim, new_seq_length) | |
# (1, hidden_dim, new_seq_length) -> (1, new_seq_length, hidden_dim) | |
new_pos_embedding_img = new_pos_embedding_img.permute(0, 2, 1) | |
new_pos_embedding = torch.cat([pos_embedding_token, new_pos_embedding_img], dim=1) | |
return new_pos_embedding | |
return pos_embedding | |
def vit_b_16( | |
image_size: int = 224, | |
reduction: int = 16, | |
**kwargs: Any, | |
) -> VisionTransformer: | |
vit = _vision_transformer( | |
patch_size=16, | |
num_layers=12, | |
num_heads=12, | |
hidden_dim=768, | |
mlp_dim=3072, | |
weights=weights["vit_b_16"], | |
reduction=reduction, | |
**kwargs, | |
) | |
if image_size != 224: | |
vit.image_size = image_size | |
new_pos_embedding = interpolate_embeddings(image_size, 16, vit.state_dict()["encoder.pos_embedding"], "bicubic") | |
vit.encoder.pos_embedding = nn.Parameter(new_pos_embedding, requires_grad=True) | |
return vit | |
def vit_b_32( | |
image_size: int = 224, | |
reduction: int = 32, | |
**kwargs: Any, | |
) -> VisionTransformer: | |
vit = _vision_transformer( | |
patch_size=32, | |
num_layers=12, | |
num_heads=12, | |
hidden_dim=768, | |
mlp_dim=3072, | |
weights=weights["vit_b_32"], | |
reduction=reduction, | |
**kwargs, | |
) | |
if image_size != 224: | |
vit.image_size = image_size | |
new_pos_embedding = interpolate_embeddings(image_size, 32, vit.state_dict()["encoder.pos_embedding"], "bicubic") | |
vit.encoder.pos_embedding = nn.Parameter(new_pos_embedding, requires_grad=True) | |
return vit | |
def vit_l_16( | |
image_size: int = 224, | |
reduction: int = 16, | |
**kwargs: Any, | |
) -> VisionTransformer: | |
vit = _vision_transformer( | |
patch_size=16, | |
num_layers=24, | |
num_heads=16, | |
hidden_dim=1024, | |
mlp_dim=4096, | |
weights=weights["vit_l_16"], | |
reduction=reduction, | |
**kwargs, | |
) | |
if image_size != 224: | |
vit.image_size = image_size | |
new_pos_embedding = interpolate_embeddings(image_size, 16, vit.state_dict()["encoder.pos_embedding"], "bicubic") | |
vit.encoder.pos_embedding = nn.Parameter(new_pos_embedding, requires_grad=True) | |
return vit | |
def vit_l_32( | |
image_size: int = 224, | |
reduction: int = 32, | |
**kwargs: Any, | |
) -> VisionTransformer: | |
vit = _vision_transformer( | |
patch_size=32, | |
num_layers=24, | |
num_heads=16, | |
hidden_dim=1024, | |
mlp_dim=4096, | |
weights=weights["vit_l_32"], | |
reduction=reduction, | |
**kwargs, | |
) | |
if image_size != 224: | |
vit.image_size = image_size | |
new_pos_embedding = interpolate_embeddings(image_size, 32, vit.state_dict()["encoder.pos_embedding"], "bicubic") | |
vit.encoder.pos_embedding = nn.Parameter(new_pos_embedding, requires_grad=True) | |
return vit | |
def vit_h_14( | |
image_size: int = 224, | |
reduction: int = 14, | |
**kwargs: Any, | |
) -> VisionTransformer: | |
vit = _vision_transformer( | |
patch_size=14, | |
num_layers=32, | |
num_heads=16, | |
hidden_dim=1280, | |
mlp_dim=5120, | |
weights=weights["vit_h_14"], | |
reduction=reduction, | |
**kwargs, | |
) | |
if image_size != 224: | |
vit.image_size = image_size | |
new_pos_embedding = interpolate_embeddings(image_size, 14, vit.state_dict()["encoder.pos_embedding"], "bicubic") | |
vit.encoder.pos_embedding = nn.Parameter(new_pos_embedding, requires_grad=True) | |
return vit | |