Spaces:
Sleeping
Sleeping
File size: 16,615 Bytes
b27b0a2 d2ca3e2 b27b0a2 d2ca3e2 b27b0a2 7b85afa b27b0a2 a0498a4 b27b0a2 d2ca3e2 7b6b454 b27b0a2 d2ca3e2 7b6b454 b27b0a2 7b6b454 b27b0a2 d2ca3e2 b27b0a2 781fb6b 25f8f7d b27b0a2 c640227 b27b0a2 d2ca3e2 25f8f7d d2ca3e2 7b85afa b27b0a2 271c21d b27b0a2 271c21d d2ca3e2 b27b0a2 d2ca3e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
# Vision Search Assistant: Empower Vision-Language Models as Multimodal Search Engines
# Github source: https://github.com/cnzzx/VSA-dev
# Licensed under The Apache License 2.0 License [see LICENSE for details]
# Based on LLaVA and MindSearch code bases
# https://github.com/haotian-liu/LLaVA
# https://github.com/IDEA-Research/GroundingDINO
# https://github.com/InternLM/MindSearch
# --------------------------------------------------------
import os
import copy
import torch
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
from .vsa_prompt import COCO_CLASSES, get_caption_prompt, get_correlate_prompt, get_qa_prompt
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path
from datetime import datetime
from lagent.actions import ActionExecutor, BingBrowser
from lagent.llms import INTERNLM2_META, LMDeployServer, LMDeployPipeline
from lagent.schema import AgentReturn, AgentStatusCode
from lagent.schema import AgentStatusCode
from .search_agent.mindsearch_agent import (
MindSearchAgent, SimpleSearchAgent, MindSearchProtocol
)
from .search_agent.mindsearch_prompt import (
FINAL_RESPONSE_CN, FINAL_RESPONSE_EN, GRAPH_PROMPT_CN, GRAPH_PROMPT_EN,
searcher_context_template_cn, searcher_context_template_en,
searcher_input_template_cn, searcher_input_template_en,
searcher_system_prompt_cn, searcher_system_prompt_en
)
from lmdeploy.messages import PytorchEngineConfig
from typing import List, Union
SEARCH_MODEL_NAMES = {
'internlm2_5-7b-chat': 'internlm2',
'internlm2_5-1_8b-chat': 'internlm2'
}
def render_bboxes(in_image: Image.Image, bboxes: np.ndarray, labels: List[str]):
out_image = copy.deepcopy(in_image)
draw = ImageDraw.Draw(out_image)
font = ImageFont.truetype(font = 'assets/Arial.ttf', size = min(in_image.width, in_image.height) // 30)
line_width = min(in_image.width, in_image.height) // 100
for i in range(bboxes.shape[0]):
draw.rectangle((bboxes[i, 0], bboxes[i, 1], bboxes[i, 2], bboxes[i, 3]), outline=(0, 255, 0), width=line_width)
bbox = draw.textbbox((bboxes[i, 0], bboxes[i, 1]), '[Area {}] '.format(i), font=font)
draw.rectangle(bbox, fill='white')
draw.text((bboxes[i, 0], bboxes[i, 1]), '[Area {}] '.format(i), fill='black', font=font)
if bboxes.shape[0] == 0:
draw.rectangle((0, 0, in_image.width, in_image.height), outline=(0, 255, 0), width=line_width)
bbox = draw.textbbox((0, 0), '[Area {}] '.format(0), font=font)
draw.rectangle(bbox, fill='white')
draw.text((0, 0), '[Area {}] '.format(0), fill='black', font=font)
return out_image
class VisualGrounder:
def __init__(
self,
model_path: str = "IDEA-Research/grounding-dino-base",
device: str = "cuda:1",
box_threshold: float = 0.4,
text_threshold: float = 0.3,
):
self.processor = AutoProcessor.from_pretrained(model_path)
self.model = AutoModelForZeroShotObjectDetection.from_pretrained(model_path).to(device)
self.device = device
self.default_classes = COCO_CLASSES
self.box_threshold = box_threshold
self.text_threshold = text_threshold
def __call__(
self,
in_image: Image.Image,
classes: Union[List[str], None] = None,
):
# Save image.
in_image.save('temp/in_image.jpg')
# Preparation.
if classes is None:
classes = self.default_classes
text = ". ".join(classes)
inputs = self.processor(images=in_image, text=text, return_tensors="pt").to(self.device)
# Grounding.
with torch.no_grad():
outputs = self.model(**inputs)
# Postprocess
results = self.processor.post_process_grounded_object_detection(
outputs,
inputs.input_ids,
box_threshold = self.box_threshold,
text_threshold = self.text_threshold,
target_sizes=[in_image.size[::-1]]
)
bboxes = results[0]['boxes'].cpu().numpy()
labels = results[0]['labels']
print(results)
# Visualization.
out_image = render_bboxes(in_image, bboxes, labels)
out_image.save('temp/ground_bbox.jpg')
return bboxes, labels, out_image
class VLM:
def __init__(
self,
model_path: str = "liuhaotian/llava-v1.6-vicuna-7b",
device: str = "cuda:2",
load_8bit: bool = False,
load_4bit: bool = True,
temperature: float = 0.2,
max_new_tokens: int = 1024,
):
disable_torch_init()
model_name = get_model_name_from_path(model_path)
self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model(
model_path, None, model_name, load_8bit, load_4bit, device=device
)
self.device = device
if "llama-2" in model_name.lower():
self.conv_mode = "llava_llama_2"
elif "mistral" in model_name.lower():
self.conv_mode = "mistral_instruct"
elif "v1.6-34b" in model_name.lower():
self.conv_mode = "chatml_direct"
elif "v1" in model_name.lower():
self.conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
self.conv_mode = "mpt"
else:
self.conv_mode = "llava_v0"
self.temperature = temperature
self.max_new_tokens = max_new_tokens
def __call__(
self,
image: Image.Image,
text: str,
):
image_size = image.size
image_tensor = process_images([image], self.image_processor, self.model.config)
if type(image_tensor) is list:
image_tensor = [image.to(self.device, dtype=torch.float16) for image in image_tensor]
else:
image_tensor = image_tensor.to(self.device, dtype=torch.float16)
if image is not None:
# first message
if self.model.config.mm_use_im_start_end:
text = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + text
else:
text = DEFAULT_IMAGE_TOKEN + '\n' + text
image = None
conv = conv_templates[self.conv_mode].copy()
conv.append_message(conv.roles[0], text)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
with torch.inference_mode():
output_ids = self.model.generate(
input_ids,
images = image_tensor,
image_sizes = [image_size],
do_sample = True if self.temperature > 0 else False,
temperature = self.temperature,
max_new_tokens = self.max_new_tokens,
streamer = None,
use_cache = True)
outputs = self.tokenizer.decode(output_ids[0]).strip()
outputs = outputs.replace('<s>', '').replace('</s>', '').replace('"', "'")
return outputs
class WebSearcher:
def __init__(
self,
model_path: str = 'internlm/internlm2_5-7b-chat',
lang: str = 'cn',
top_p: float = 0.8,
top_k: int = 1,
temperature: float = 0,
max_new_tokens: int = 8192,
repetition_penalty: float = 1.02,
max_turn: int = 10,
):
model_name = get_model_name_from_path(model_path)
if model_name in SEARCH_MODEL_NAMES:
model_name = SEARCH_MODEL_NAMES[model_name]
else:
raise Exception('Unsupported model for web searcher.')
self.lang = lang
backend_config = PytorchEngineConfig(
max_batch_size = 1,
)
llm = LMDeployServer(
path = model_path,
model_name = model_name,
meta_template = INTERNLM2_META,
top_p = top_p,
top_k = top_k,
temperature = temperature,
max_new_tokens = max_new_tokens,
repetition_penalty = repetition_penalty,
stop_words = ['<|im_end|>'],
serve_cfg = dict(
backend_config = backend_config
)
)
# llm = LMDeployPipeline(
# path = model_path,
# model_name = model_name,
# meta_template = INTERNLM2_META,
# top_p = top_p,
# top_k = top_k,
# temperature = temperature,
# max_new_tokens = max_new_tokens,
# repetition_penalty = repetition_penalty,
# stop_words = ['<|im_end|>'],
# )
self.agent = MindSearchAgent(
llm = llm,
protocol = MindSearchProtocol(
meta_prompt = datetime.now().strftime('The current date is %Y-%m-%d.'),
interpreter_prompt = GRAPH_PROMPT_CN if lang == 'cn' else GRAPH_PROMPT_EN,
response_prompt = FINAL_RESPONSE_CN if lang == 'cn' else FINAL_RESPONSE_EN
),
searcher_cfg=dict(
llm = llm,
plugin_executor = ActionExecutor(
BingBrowser(searcher_type='DuckDuckGoSearch', topk=6)
),
protocol = MindSearchProtocol(
meta_prompt=datetime.now().strftime('The current date is %Y-%m-%d.'),
plugin_prompt=searcher_system_prompt_cn if lang == 'cn' else searcher_system_prompt_en,
),
template = dict(
input=searcher_input_template_cn if lang == 'cn' else searcher_input_template_en,
context=searcher_context_template_cn if lang == 'cn' else searcher_context_template_en)
),
max_turn = max_turn
)
def __call__(
self,
queries: List[str]
):
results = []
for qid, query in enumerate(queries):
result = None
for agent_return in self.agent.stream_chat(query):
if isinstance(agent_return, AgentReturn):
if agent_return.state == AgentStatusCode.END:
result = agent_return.response
assert result is not None
with open('temp/search_result_{}.txt'.format(qid), 'w', encoding='utf-8') as wf:
wf.write(result)
results.append(result)
# for qid, query in enumerate(queries):
# result = None
# agent_return = self.agent.generate(query)
# result = agent_return.response
# assert result is not None
# with open('temp/search_result_{}.txt'.format(qid), 'w', encoding='utf-8') as wf:
# wf.write(result)
# results.append(result)
return results
class VisionSearchAssistant:
"""
Vision Search Assistant: Empower Vision-Language Models as Multimodal Search Engines
This class implements all variants of Vision Search Assistant:
* search_model: Vision Search Assistant use this model for dealing with the search process,
it corresponds to the $\mathcal{F}_{llm}(cdot)$ in the paper. You can choose the model
according to your preference.
* ground_model: The vision foundation model used in the open-vocab detection process,
it's relevant to the specific contents of the classes in the image.
* vlm_model: The main vision-language model we used in our paper is LLaVA-1.6 baseline,
It can be further improved by using advanced models. And it corresponds to
the $\mathcal{F}_{vlm}(cdot)$ in the paper.
"""
def __init__(
self,
search_model: str = "internlm/internlm2_5-1_8b-chat",
ground_model: str = "IDEA-Research/grounding-dino-tiny",
ground_device: str = "cuda:1",
vlm_model: str = "liuhaotian/llava-v1.6-vicuna-7b",
vlm_device: str = "cuda:2",
vlm_load_4bit: bool = True,
vlm_load_8bit: bool = False,
):
self.search_model = search_model
self.ground_model = ground_model
self.ground_device = ground_device
self.vlm_model = vlm_model
self.vlm_device = vlm_device
self.vlm_load_4bit = vlm_load_4bit
self.vlm_load_8bit = vlm_load_8bit
self.use_correlate = True
self.searcher = WebSearcher(
model_path = self.search_model,
lang = 'en'
)
self.grounder = VisualGrounder(
model_path = self.ground_model,
device = self.ground_device,
)
self.vlm = VLM(
model_path = self.vlm_model,
device = self.vlm_device,
load_4bit = self.vlm_load_4bit,
load_8bit = self.vlm_load_8bit
)
def app_run(
self,
image: Union[str, Image.Image, np.ndarray],
text: str,
ground_classes: List[str] = COCO_CLASSES
):
# Create and clear the temporary directory.
if not os.access('temp', os.F_OK):
os.makedirs('temp')
for file in os.listdir('temp'):
os.remove(os.path.join('temp', file))
with open('temp/text.txt', 'w', encoding='utf-8') as wf:
wf.write(text)
# Load Image
if isinstance(image, str):
in_image = Image.open(image)
elif isinstance(image, Image.Image):
in_image = image
elif isinstance(image, np.ndarray):
in_image = Image.fromarray(image.astype(np.uint8))
else:
raise Exception('Unsupported input image format.')
# Visual Grounding
bboxes, labels, out_image = self.grounder(in_image, classes = ground_classes)
yield out_image, 'ground'
det_images = []
for bid, bbox in enumerate(bboxes):
crop_box = (int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3]))
det_image = in_image.crop(crop_box)
det_image.save('temp/debug_bbox_image_{}.jpg'.format(bid))
det_images.append(det_image)
if len(det_images) == 0: # No object detected, use the full image.
det_images.append(in_image)
labels.append('image')
# Visual Captioning
captions = []
for det_image, label in zip(det_images, labels):
inp = get_caption_prompt(label, text)
caption = self.vlm(det_image, inp)
captions.append(caption)
for cid, caption in enumerate(captions):
with open('temp/caption_{}.txt'.format(cid), 'w', encoding='utf-8') as wf:
wf.write(caption)
# Visual Correlation
if len(captions) >= 2 and self.use_correlate:
queries = []
for mid, det_image in enumerate(det_images):
caption = captions[mid]
other_captions = []
for cid in range(len(captions)):
if cid == mid:
continue
other_captions.append(captions[cid])
inp = get_correlate_prompt(caption, other_captions)
query = self.vlm(det_image, inp)
queries.append(query)
else:
queries = captions
for qid, query in enumerate(queries):
with open('temp/query_{}.txt'.format(qid), 'w', encoding='utf-8') as wf:
wf.write(query)
yield queries, 'query'
queries = [text + " " + query for query in queries]
# Web Searching
contexts = self.searcher(queries)
yield contexts, 'search'
# QA
TOKEN_LIMIT = 3500
max_length_per_context = TOKEN_LIMIT // len(contexts)
for cid, context in enumerate(contexts):
contexts[cid] = (queries[cid] + context)[:max_length_per_context]
inp = get_qa_prompt(text, contexts)
answer = self.vlm(in_image, inp)
with open('temp/answer.txt', 'w', encoding='utf-8') as wf:
wf.write(answer)
print(answer)
yield answer, 'answer'
|