Spaces:
Sleeping
Sleeping
import copy | |
import logging | |
from typing import List, Optional, Union | |
from lagent.llms.base_llm import BaseModel | |
from lagent.schema import ModelStatusCode | |
from lagent.utils.util import filter_suffix | |
class LMDeployServer(BaseModel): | |
""" | |
Args: | |
path (str): The path to the model. | |
It could be one of the following options: | |
- i) A local directory path of a turbomind model which is | |
converted by `lmdeploy convert` command or download from | |
ii) and iii). | |
- ii) The model_id of a lmdeploy-quantized model hosted | |
inside a model repo on huggingface.co, such as | |
"InternLM/internlm-chat-20b-4bit", | |
"lmdeploy/llama2-chat-70b-4bit", etc. | |
- iii) The model_id of a model hosted inside a model repo | |
on huggingface.co, such as "internlm/internlm-chat-7b", | |
"Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat" | |
and so on. | |
model_name (str): needed when model_path is a pytorch model on | |
huggingface.co, such as "internlm-chat-7b", | |
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on. | |
server_name (str): host ip for serving | |
server_port (int): server port | |
tp (int): tensor parallel | |
log_level (str): set log level whose value among | |
[CRITICAL, ERROR, WARNING, INFO, DEBUG] | |
""" | |
def __init__(self, | |
path: str, | |
model_name: Optional[str] = None, | |
server_name: str = '0.0.0.0', | |
server_port: int = 23333, | |
tp: int = 1, | |
log_level: str = 'WARNING', | |
serve_cfg=dict(), | |
**kwargs): | |
super().__init__(path=path, **kwargs) | |
self.model_name = model_name | |
# TODO get_logger issue in multi processing | |
import lmdeploy | |
self.client = lmdeploy.serve( | |
model_path=self.path, | |
model_name=model_name, | |
server_name=server_name, | |
server_port=server_port, | |
tp=tp, | |
log_level=log_level, | |
**serve_cfg) | |
def generate(self, | |
inputs: Union[str, List[str]], | |
session_id: int = 2967, | |
sequence_start: bool = True, | |
sequence_end: bool = True, | |
ignore_eos: bool = False, | |
skip_special_tokens: Optional[bool] = False, | |
timeout: int = 30, | |
**kwargs) -> List[str]: | |
"""Start a new round conversation of a session. Return the chat | |
completions in non-stream mode. | |
Args: | |
inputs (str, List[str]): user's prompt(s) in this round | |
session_id (int): the identical id of a session | |
sequence_start (bool): start flag of a session | |
sequence_end (bool): end flag of a session | |
ignore_eos (bool): indicator for ignoring eos | |
skip_special_tokens (bool): Whether or not to remove special tokens | |
in the decoding. Default to be False. | |
timeout (int): max time to wait for response | |
Returns: | |
(a list of/batched) text/chat completion | |
""" | |
batched = True | |
if isinstance(inputs, str): | |
inputs = [inputs] | |
batched = False | |
gen_params = self.update_gen_params(**kwargs) | |
max_new_tokens = gen_params.pop('max_new_tokens') | |
gen_params.update(max_tokens=max_new_tokens) | |
resp = [''] * len(inputs) | |
for text in self.client.completions_v1( | |
self.model_name, | |
inputs, | |
session_id=session_id, | |
sequence_start=sequence_start, | |
sequence_end=sequence_end, | |
stream=False, | |
ignore_eos=ignore_eos, | |
skip_special_tokens=skip_special_tokens, | |
timeout=timeout, | |
**gen_params): | |
resp = [ | |
resp[i] + item['text'] | |
for i, item in enumerate(text['choices']) | |
] | |
# remove stop_words | |
resp = filter_suffix(resp, self.gen_params.get('stop_words')) | |
if not batched: | |
return resp[0] | |
return resp | |
def stream_chat(self, | |
inputs: List[dict], | |
session_id=0, | |
sequence_start: bool = True, | |
sequence_end: bool = True, | |
stream: bool = True, | |
ignore_eos: bool = False, | |
skip_special_tokens: Optional[bool] = False, | |
timeout: int = 30, | |
**kwargs): | |
"""Start a new round conversation of a session. Return the chat | |
completions in stream mode. | |
Args: | |
session_id (int): the identical id of a session | |
inputs (List[dict]): user's inputs in this round conversation | |
sequence_start (bool): start flag of a session | |
sequence_end (bool): end flag of a session | |
stream (bool): return in a streaming format if enabled | |
ignore_eos (bool): indicator for ignoring eos | |
skip_special_tokens (bool): Whether or not to remove special tokens | |
in the decoding. Default to be False. | |
timeout (int): max time to wait for response | |
Returns: | |
tuple(Status, str, int): status, text/chat completion, | |
generated token number | |
""" | |
gen_params = self.update_gen_params(**kwargs) | |
max_new_tokens = gen_params.pop('max_new_tokens') | |
gen_params.update(max_tokens=max_new_tokens) | |
prompt = self.template_parser(inputs) | |
resp = '' | |
finished = False | |
stop_words = self.gen_params.get('stop_words') | |
for text in self.client.completions_v1( | |
self.model_name, | |
prompt, | |
session_id=session_id, | |
sequence_start=sequence_start, | |
sequence_end=sequence_end, | |
stream=stream, | |
ignore_eos=ignore_eos, | |
skip_special_tokens=skip_special_tokens, | |
timeout=timeout, | |
**gen_params): | |
resp += text['choices'][0]['text'] | |
if not resp: | |
continue | |
# remove stop_words | |
for sw in stop_words: | |
if sw in resp: | |
resp = filter_suffix(resp, stop_words) | |
finished = True | |
break | |
yield ModelStatusCode.STREAM_ING, resp, None | |
if finished: | |
break | |
yield ModelStatusCode.END, resp, None |