File size: 7,806 Bytes
55af72e f122391 55af72e f122391 54e7c0c f122391 54e7c0c 9967326 54e7c0c 9967326 54e7c0c 55af72e 9967326 f122391 9967326 f122391 9967326 54e7c0c f122391 55af72e 54e7c0c f122391 9967326 55af72e 9967326 55af72e 9967326 f122391 9967326 f122391 9967326 55af72e 9967326 55af72e 9967326 f122391 54e7c0c 9967326 03ca244 9967326 f122391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import os
import io
import time
import asyncio
import requests
from tqdm import tqdm
from fastapi import FastAPI, HTTPException, Request
import uvicorn
from llama_cpp import Llama
app = FastAPI()
# Configuración de modelos
model_configs = [
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
{"repo_id": "Ffftdtd5dtft/starcoder2-15b-Q2_K-GGUF", "filename": "starcoder2-15b-q2_k.gguf", "name": "Starcoder2 15B"},
{"repo_id": "Ffftdtd5dtft/gemma-2-2b-it-Q2_K-GGUF", "filename": "gemma-2-2b-it-q2_k.gguf", "name": "Gemma 2-2B IT"},
{"repo_id": "Ffftdtd5dtft/sarvam-2b-v0.5-Q2_K-GGUF", "filename": "sarvam-2b-v0.5-q2_k.gguf", "name": "Sarvam 2B v0.5"},
{"repo_id": "Ffftdtd5dtft/WizardLM-13B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-13b-uncensored-q2_k.gguf", "name": "WizardLM 13B Uncensored"},
{"repo_id": "Ffftdtd5dtft/Qwen2-Math-72B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-72b-instruct-q2_k.gguf", "name": "Qwen2 Math 72B Instruct"},
{"repo_id": "Ffftdtd5dtft/WizardLM-7B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-7b-uncensored-q2_k.gguf", "name": "WizardLM 7B Uncensored"},
{"repo_id": "Ffftdtd5dtft/Qwen2-Math-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-7b-instruct-q2_k.gguf", "name": "Qwen2 Math 7B Instruct"}
]
class ModelManager:
def __init__(self):
self.models = {}
self.part_size = 1024 * 1024 # Tamaño de cada parte en bytes (1 MB)
async def download_model_to_memory(self, model_config):
url = f"https://huggingface.co/{model_config['repo_id']}/resolve/main/{model_config['filename']}"
print(f"Descargando modelo desde {url}")
try:
start_time = time.time()
response = requests.get(url)
response.raise_for_status()
model_file = io.BytesIO(response.content)
end_time = time.time()
download_duration = end_time - start_time
print(f"Descarga completa para {model_config['name']} en {download_duration:.2f} segundos")
return model_file
except requests.RequestException as e:
raise HTTPException(status_code=500, detail=f"Error al descargar el modelo: {e}")
async def save_model_to_temp_file(self, model_file, model_config):
temp_filename = f"/tmp/{model_config['filename']}"
print(f"Guardando el modelo en {temp_filename}")
with open(temp_filename, 'wb') as f:
f.write(model_file.getvalue())
print(f"Modelo guardado en {temp_filename}")
return temp_filename
async def load_model(self, model_config):
model_file = await self.download_model_to_memory(model_config)
temp_filename = await self.save_model_to_temp_file(model_file, model_config)
try:
start_time = time.time()
print(f"Cargando modelo desde {temp_filename}")
llama = Llama.load(temp_filename)
end_time = time.time()
load_duration = end_time - start_time
if load_duration > 0:
print(f"Modelo {model_config['name']} tardó {load_duration:.2f} segundos en cargar, dividiendo automáticamente")
await self.handle_large_model(temp_filename, model_config)
else:
print(f"Modelo {model_config['name']} cargado correctamente en {load_duration:.2f} segundos")
tokenizer = llama.tokenizer
model_data = {
'model': llama,
'tokenizer': tokenizer,
'pad_token': tokenizer.pad_token,
'pad_token_id': tokenizer.pad_token_id,
'eos_token': tokenizer.eos_token,
'eos_token_id': tokenizer.eos_token_id,
'bos_token': tokenizer.bos_token,
'bos_token_id': tokenizer.bos_token_id,
'unk_token': tokenizer.unk_token,
'unk_token_id': tokenizer.unk_token_id
}
self.models[model_config['name']] = model_data
except Exception as e:
print(f"Error al cargar el modelo: {e}")
async def handle_large_model(self, model_filename, model_config):
total_size = os.path.getsize(model_filename)
num_parts = (total_size + self.part_size - 1) // self.part_size
print(f"Modelo {model_config['name']} dividido en {num_parts} partes")
with open(model_filename, 'rb') as file:
for i in tqdm(range(num_parts), desc=f"Indexando {model_config['name']}"):
start = i * self.part_size
end = min(start + self.part_size, total_size)
file.seek(start)
model_part = io.BytesIO(file.read(end - start))
await self.index_model_part(model_part, i)
async def index_model_part(self, model_part, part_index):
part_name = f"part_{part_index}"
print(f"Indexando parte {part_index}")
temp_filename = f"/tmp/{part_name}.gguf"
with open(temp_filename, 'wb') as f:
f.write(model_part.getvalue())
print(f"Parte {part_index} indexada y guardada")
async def generate_response(self, user_input):
results = []
for model_name, model_data in self.models.items():
print(f"Generando respuesta con el modelo {model_name}")
try:
tokenizer = model_data['tokenizer']
input_ids = tokenizer(user_input, return_tensors="pt").input_ids
outputs = model_data['model'].generate(input_ids)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
parts = [generated_text[i:i + 1000] for i in range(0, len(generated_text), 1000)]
results.append({
'model_name': model_name,
'generated_text_parts': parts
})
except Exception as e:
print(f"Error al generar respuesta con el modelo {model_name}: {e}")
results.append({'model_name': model_name, 'error': str(e)})
return results
@app.post("/generate/")
async def generate(request: Request):
data = await request.json()
user_input = data.get('input', '')
if not user_input:
raise HTTPException(status_code=400, detail="Se requiere una entrada de usuario.")
model_manager = ModelManager()
tasks = [model_manager.load_model(config) for config in model_configs]
await asyncio.gather(*tasks)
responses = await model_manager.generate_response(user_input)
return {"responses": responses}
def start_uvicorn():
uvicorn.run(app, host="0.0.0.0", port=7860)
if __name__ == "__main__":
asyncio.run(start_uvicorn())
|