|
from fastapi import FastAPI, HTTPException, Request |
|
from pydantic import BaseModel |
|
import uvicorn |
|
import requests |
|
import io |
|
import asyncio |
|
from typing import List, Dict, Any |
|
from llama_cpp import Llama |
|
|
|
app = FastAPI() |
|
|
|
|
|
model_configs = [ |
|
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"}, |
|
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"}, |
|
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"}, |
|
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"}, |
|
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"}, |
|
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"}, |
|
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"}, |
|
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"}, |
|
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"}, |
|
{"repo_id": "Ffftdtd5dtft/starcoder2-15b-Q2_K-GGUF", "filename": "starcoder2-15b-q2_k.gguf", "name": "Starcoder2 15B"}, |
|
{"repo_id": "Ffftdtd5dtft/gemma-2-2b-it-Q2_K-GGUF", "filename": "gemma-2-2b-it-q2_k.gguf", "name": "Gemma 2-2B IT"}, |
|
{"repo_id": "Ffftdtd5dtft/sarvam-2b-v0.5-Q2_K-GGUF", "filename": "sarvam-2b-v0.5-q2_k.gguf", "name": "Sarvam 2B v0.5"}, |
|
{"repo_id": "Ffftdtd5dtft/WizardLM-13B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-13b-uncensored-q2_k.gguf", "name": "WizardLM 13B Uncensored"}, |
|
{"repo_id": "Ffftdtd5dtft/Qwen2-Math-72B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-72b-instruct-q2_k.gguf", "name": "Qwen2 Math 72B Instruct"}, |
|
{"repo_id": "Ffftdtd5dtft/WizardLM-7B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-7b-uncensored-q2_k.gguf", "name": "WizardLM 7B Uncensored"}, |
|
{"repo_id": "Ffftdtd5dtft/Qwen2-Math-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-7b-instruct-q2_k.gguf", "name": "Qwen2 Math 7B Instruct"} |
|
] |
|
|
|
class ModelManager: |
|
def __init__(self): |
|
self.models = {} |
|
self.model_parts = {} |
|
self.load_lock = asyncio.Lock() |
|
self.index_lock = asyncio.Lock() |
|
self.part_size = 1024 * 1024 |
|
|
|
async def download_model_to_memory(self, model_config): |
|
url = f"https://huggingface.co/{model_config['repo_id']}/resolve/main/{model_config['filename']}" |
|
try: |
|
response = requests.get(url) |
|
response.raise_for_status() |
|
return io.BytesIO(response.content) |
|
except requests.RequestException as e: |
|
raise HTTPException(status_code=500, detail=f"Error al descargar el modelo: {e}") |
|
|
|
async def load_model(self, model_config): |
|
async with self.load_lock: |
|
try: |
|
model_file = await self.download_model_to_memory(model_config) |
|
llama = Llama(model_file) |
|
|
|
tokenizer = llama.tokenizer |
|
model_data = { |
|
'model': llama, |
|
'tokenizer': tokenizer, |
|
'pad_token': tokenizer.pad_token, |
|
'pad_token_id': tokenizer.pad_token_id, |
|
'eos_token': tokenizer.eos_token, |
|
'eos_token_id': tokenizer.eos_token_id, |
|
'bos_token': tokenizer.bos_token, |
|
'bos_token_id': tokenizer.bos_token_id, |
|
'unk_token': tokenizer.unk_token, |
|
'unk_token_id': tokenizer.unk_token_id |
|
} |
|
|
|
self.models[model_config['name']] = model_data |
|
await self.handle_large_model(model_config, model_file) |
|
except Exception as e: |
|
print(f"Error al cargar el modelo: {e}") |
|
|
|
async def handle_large_model(self, model_config, model_file): |
|
total_size = len(model_file.getvalue()) |
|
num_parts = (total_size + self.part_size - 1) // self.part_size |
|
|
|
for i in range(num_parts): |
|
start = i * self.part_size |
|
end = min(start + self.part_size, total_size) |
|
model_part = io.BytesIO(model_file.getvalue()[start:end]) |
|
await self.index_model_part(model_part, i) |
|
|
|
async def index_model_part(self, model_part, part_index): |
|
async with self.index_lock: |
|
part_name = f"part_{part_index}" |
|
llama_part = Llama(model_part) |
|
self.model_parts[part_name] = llama_part |
|
|
|
async def generate_response(self, user_input): |
|
tasks = [self.generate_chat_response(user_input, model_data) for model_data in self.models.values()] |
|
responses = await asyncio.gather(*tasks) |
|
return responses |
|
|
|
async def generate_chat_response(self, user_input, model_data): |
|
try: |
|
llama = model_data['model'] |
|
tokenizer = model_data['tokenizer'] |
|
|
|
response = await asyncio.get_event_loop().run_in_executor( |
|
None, |
|
lambda: llama.generate(user_input, max_length=1000, do_sample=True) |
|
) |
|
generated_text = response['generated_text'] |
|
|
|
|
|
parts = [] |
|
while len(generated_text) > 1000: |
|
part = generated_text[:1000] |
|
generated_text = generated_text[1000:] |
|
parts.append(part.strip()) |
|
if generated_text: |
|
parts.append(generated_text.strip()) |
|
|
|
return {"response": '\n'.join(parts), "model_name": model_data['name']} |
|
except Exception as e: |
|
print(f"Error al generar la respuesta: {e}") |
|
return {"response": "Error al generar la respuesta", "model_name": model_data['name']} |
|
|
|
@app.post("/chat") |
|
async def chat(request: Request): |
|
body = await request.json() |
|
user_input = body.get('message', '').strip() |
|
if not user_input: |
|
raise HTTPException(status_code=400, detail="El mensaje no puede estar vacío.") |
|
|
|
try: |
|
model_manager = ModelManager() |
|
responses = await model_manager.generate_response(user_input) |
|
return {"responses": responses} |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
def start_uvicorn(): |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|
|
if __name__ == "__main__": |
|
loop = asyncio.get_event_loop() |
|
model_manager = ModelManager() |
|
tasks = [model_manager.load_model(config) for config in model_configs] |
|
loop.run_until_complete(asyncio.gather(*tasks)) |
|
start_uvicorn() |
|
|