sdsdsd / app.py
Yjhhh's picture
Update app.py
9967326 verified
raw
history blame
7.09 kB
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel
import uvicorn
import requests
import io
import asyncio
from typing import List, Dict, Any
from llama_cpp import Llama # Ajusta según la biblioteca que estés utilizando
app = FastAPI()
# Configuración de los modelos
model_configs = [
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
{"repo_id": "Ffftdtd5dtft/starcoder2-15b-Q2_K-GGUF", "filename": "starcoder2-15b-q2_k.gguf", "name": "Starcoder2 15B"},
{"repo_id": "Ffftdtd5dtft/gemma-2-2b-it-Q2_K-GGUF", "filename": "gemma-2-2b-it-q2_k.gguf", "name": "Gemma 2-2B IT"},
{"repo_id": "Ffftdtd5dtft/sarvam-2b-v0.5-Q2_K-GGUF", "filename": "sarvam-2b-v0.5-q2_k.gguf", "name": "Sarvam 2B v0.5"},
{"repo_id": "Ffftdtd5dtft/WizardLM-13B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-13b-uncensored-q2_k.gguf", "name": "WizardLM 13B Uncensored"},
{"repo_id": "Ffftdtd5dtft/Qwen2-Math-72B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-72b-instruct-q2_k.gguf", "name": "Qwen2 Math 72B Instruct"},
{"repo_id": "Ffftdtd5dtft/WizardLM-7B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-7b-uncensored-q2_k.gguf", "name": "WizardLM 7B Uncensored"},
{"repo_id": "Ffftdtd5dtft/Qwen2-Math-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-7b-instruct-q2_k.gguf", "name": "Qwen2 Math 7B Instruct"}
]
class ModelManager:
def __init__(self):
self.models = {}
self.model_parts = {}
self.load_lock = asyncio.Lock()
self.index_lock = asyncio.Lock()
self.part_size = 1024 * 1024 # Tamaño de cada parte en bytes (1 MB)
async def download_model_to_memory(self, model_config):
url = f"https://huggingface.co/{model_config['repo_id']}/resolve/main/{model_config['filename']}"
try:
response = requests.get(url)
response.raise_for_status()
return io.BytesIO(response.content)
except requests.RequestException as e:
raise HTTPException(status_code=500, detail=f"Error al descargar el modelo: {e}")
async def load_model(self, model_config):
async with self.load_lock:
try:
model_file = await self.download_model_to_memory(model_config)
llama = Llama(model_file) # Ajusta según la biblioteca y clase correctas
tokenizer = llama.tokenizer
model_data = {
'model': llama,
'tokenizer': tokenizer,
'pad_token': tokenizer.pad_token,
'pad_token_id': tokenizer.pad_token_id,
'eos_token': tokenizer.eos_token,
'eos_token_id': tokenizer.eos_token_id,
'bos_token': tokenizer.bos_token,
'bos_token_id': tokenizer.bos_token_id,
'unk_token': tokenizer.unk_token,
'unk_token_id': tokenizer.unk_token_id
}
self.models[model_config['name']] = model_data
await self.handle_large_model(model_config, model_file)
except Exception as e:
print(f"Error al cargar el modelo: {e}")
async def handle_large_model(self, model_config, model_file):
total_size = len(model_file.getvalue())
num_parts = (total_size + self.part_size - 1) // self.part_size
for i in range(num_parts):
start = i * self.part_size
end = min(start + self.part_size, total_size)
model_part = io.BytesIO(model_file.getvalue()[start:end])
await self.index_model_part(model_part, i)
async def index_model_part(self, model_part, part_index):
async with self.index_lock:
part_name = f"part_{part_index}"
llama_part = Llama(model_part)
self.model_parts[part_name] = llama_part
async def generate_response(self, user_input):
tasks = [self.generate_chat_response(user_input, model_data) for model_data in self.models.values()]
responses = await asyncio.gather(*tasks)
return responses
async def generate_chat_response(self, user_input, model_data):
try:
llama = model_data['model']
tokenizer = model_data['tokenizer']
response = await asyncio.get_event_loop().run_in_executor(
None,
lambda: llama.generate(user_input, max_length=1000, do_sample=True)
)
generated_text = response['generated_text']
# Dividir el texto generado en partes si es necesario
parts = []
while len(generated_text) > 1000:
part = generated_text[:1000]
generated_text = generated_text[1000:]
parts.append(part.strip())
if generated_text:
parts.append(generated_text.strip())
return {"response": '\n'.join(parts), "model_name": model_data['name']}
except Exception as e:
print(f"Error al generar la respuesta: {e}")
return {"response": "Error al generar la respuesta", "model_name": model_data['name']}
@app.post("/chat")
async def chat(request: Request):
body = await request.json()
user_input = body.get('message', '').strip()
if not user_input:
raise HTTPException(status_code=400, detail="El mensaje no puede estar vacío.")
try:
model_manager = ModelManager()
responses = await model_manager.generate_response(user_input)
return {"responses": responses}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
def start_uvicorn():
uvicorn.run(app, host="0.0.0.0", port=7860)
if __name__ == "__main__":
loop = asyncio.get_event_loop()
model_manager = ModelManager()
tasks = [model_manager.load_model(config) for config in model_configs]
loop.run_until_complete(asyncio.gather(*tasks))
start_uvicorn()