YoanSallami
Add notebooks
fe643f6
import marimo
__generated_with = "0.11.9"
app = marimo.App()
@app.cell(hide_code=True)
def _():
import marimo as mo
import synalinks
synalinks.backend.clear_session()
return mo, synalinks
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
# Control Flow
Controlling the flow of information in a program is an essential feature of any LM framework.
In Synalinks, we implemented it in circuit-like fashion, where the flow of information can be
conditionaly or logically restricted to only flow in a subset of a computation graph.
## Parallel Branches
To create parallel branches, all you need to do is using the same inputs when declaring the modules.
Then Synalinks will automatically detect them and run them in parrallel with asyncio.
"""
)
return
@app.cell
async def _(synalinks):
class Query(synalinks.DataModel):
query: str = synalinks.Field(
description="The user query",
)
class AnswerWithThinking(synalinks.DataModel):
thinking: str = synalinks.Field(
description="Your step by step thinking process",
)
answer: str = synalinks.Field(
description="The correct answer",
)
language_model = synalinks.LanguageModel(model="ollama_chat/deepseek-r1")
_x0 = synalinks.Input(data_model=Query)
_x1 = await synalinks.Generator(
data_model=AnswerWithThinking,
language_model=language_model,
)(_x0)
_x2 = await synalinks.Generator(
data_model=AnswerWithThinking,
language_model=language_model,
)(_x0)
program = synalinks.Program(
inputs=_x0,
outputs=[_x1, _x2],
name="parallel_branches",
description="Illustrate the use of parallel branching",
)
return AnswerWithThinking, Query, language_model, program, synalinks
@app.cell
def _(mo, program, synalinks):
synalinks.utils.plot_program(
program,
show_module_names=True,
show_schemas=True,
show_trainable=True,
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Decisions
Decisions in Synalinks can be viewed as a single label classification, they allow
the system to classify the inputs based on a question and labels to choose from.
The labels are used to create on the fly a Enum schema that ensure, thanks to
constrained structured output, that the system will answer one of the provided labels.
"""
)
return
@app.cell
async def _(Query, language_model, synalinks):
_x0 = synalinks.Input(data_model=Query)
_x1 = await synalinks.Decision(
question="Evaluate the difficulty to answer the provided query",
labels=["easy", "difficult"],
language_model=language_model,
)(_x0)
program_1 = synalinks.Program(
inputs=_x0,
outputs=_x1,
name="decision_making",
description="Illustrate the decision making process",
)
return (program_1,)
@app.cell
def _(mo, program_1, synalinks):
synalinks.utils.plot_program(
program_1,
show_module_names=True,
show_schemas=True,
show_trainable=True,
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Conditional Branches
To make conditional branches, we will need the help of a core module: The Branch
module. This module use a decision and route the input data model to the selected
branch. When a branch is not selected, that branch output a None.
"""
)
return
@app.cell
async def _(AnswerWithThinking, Query, language_model, synalinks):
class Answer(synalinks.DataModel):
answer: str = synalinks.Field(
description="The correct answer",
)
_x0 = synalinks.Input(data_model=Query)
(_x1, _x2) = await synalinks.Branch(
question="Evaluate the difficulty to answer the provided query",
labels=["easy", "difficult"],
branches=[
synalinks.Generator(
data_model=Answer,
language_model=language_model,
),
synalinks.Generator(
data_model=AnswerWithThinking,
language_model=language_model,
),
],
)(_x0)
program_2 = synalinks.Program(
inputs=_x0,
outputs=[_x1, _x2],
name="conditional_branches",
description="Illustrate the conditional branches",
)
return Answer, program_2
@app.cell
def _(mo, program_2, synalinks):
synalinks.utils.plot_program(
program_2,
show_module_names=True,
show_schemas=True,
show_trainable=True,
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
## Data Models Operators
Synalinks implement few operators that works with data models, some of them are
straightforward, like the concatenation, implemented in the Python `+` operator.
But others like the `logical_and` and `logical_or` implemented respectively
in the `&` and `|` operator are more difficult to grasp at first. As explained
above, in the conditional branches, the branch not selected will have a None
as output. To account that fact and to implement logical flows, we need operators
that can work with them. See the [Ops API](https://synalinks.github.io/synalinks/Synalinks%20API/Ops%20API/)
section for an extensive list of all data model operations.
### Concatenation
The concatenation, consist in creating a data model that have the fields of both
inputs. When one of the input is `None`, it raise an exception. Note that you can
use the concatenation, like any other operator, at a meta-class level, meaning
you can actually concatenate data model types.
### Concatenation Table
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
| `x1` | `x2` | Concat (`+`) |
| ------ | ------ | ----------------- |
| `x1` | `x2` | `x1 + x2` |
| `x1` | `None` | `Exception` |
| `None` | `x2` | `Exception` |
| `None` | `None` | `Exception` |
"""
).center()
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Concatenation Example
"""
)
return
@app.cell
async def _(AnswerWithThinking, Query, language_model, synalinks):
_x0 = synalinks.Input(data_model=Query)
_x1 = await synalinks.Generator(
data_model=AnswerWithThinking,
language_model=language_model,
)(_x0)
_x2 = await synalinks.Generator(
data_model=AnswerWithThinking,
language_model=language_model,
)(_x0)
_x3 = _x1 + _x2
program_3 = synalinks.Program(
inputs=_x0,
outputs=_x3,
name="concatenation",
description="Illustrate the use of concatenate",
)
return (program_3,)
@app.cell
def _(mo, program_3, synalinks):
synalinks.utils.plot_program(
program_3,
show_module_names=True,
show_schemas=True,
show_trainable=True,
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Logical And
The `logical_and` is a concatenation that instead of raising an `Exception`,
output a `None`. This operator should be used, when you have to concatenate
a data model with an another one that can be `None`, like a `Branch` output.
### Logical And Table
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
| `x1` | `x2` | Logical And (`&`) |
| ------ | ------ | ----------------- |
| `x1` | `x2` | `x1 + x2` |
| `x1` | `None` | `None` |
| `None` | `x2` | `None` |
| `None` | `None` | `None` |
"""
).center()
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Logical And Example
"""
)
return
@app.cell
async def _(Answer, AnswerWithThinking, Query, language_model, synalinks):
class Critique(synalinks.DataModel):
critique: str = synalinks.Field(
description="The critique of the answer",
)
_x0 = synalinks.Input(data_model=Query)
(_x1, _x2) = await synalinks.Branch(
question="Evaluate the difficulty to answer the provided query",
labels=["easy", "difficult"],
branches=[
synalinks.Generator(
data_model=Answer,
language_model=language_model,
),
synalinks.Generator(
data_model=AnswerWithThinking,
language_model=language_model,
),
],
return_decision=False,
)(_x0)
_x3 = _x0 & _x1
_x4 = _x0 & _x2
_x5 = await synalinks.Generator(
data_model=Critique,
language_model=language_model,
return_inputs=True,
)(_x3)
_x6 = await synalinks.Generator(
data_model=Critique,
language_model=language_model,
return_inputs=True,
)(_x4)
_x7 = _x5 | _x6
_x8 = await synalinks.Generator(
data_model=Answer,
language_model=language_model,
)(_x7)
program_4 = synalinks.Program(
inputs=_x0,
outputs=_x8,
name="logical_and",
description="Illustrate the use of logical and",
)
return Critique, program_4
@app.cell
def _(mo, program_4, synalinks):
synalinks.utils.plot_program(
program_4,
show_module_names=True,
show_schemas=True,
show_trainable=True,
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Logical Or
The `logical_or` is used when you want to combine two data models, but you can
accomodate that one of them is `None`. Another use, is to gather the outputs of
a `Branch`, as only one branch is active, it allows you merge the branches outputs
into a unique data model.
### Logical Or Table
"""
)
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
| `x1` | `x2` | Logical Or (`|`) |
| ------ | ------ | ---------------- |
| `x1` | `x2` | `x1 + x2` |
| `x1` | `None` | `x1` |
| `None` | `x2` | `x2` |
| `None` | `None` | `None` |
"""
).center()
return
@app.cell(hide_code=True)
def _(mo):
mo.md(
r"""
### Logical Or Example
"""
)
return
@app.cell
async def _(Answer, AnswerWithThinking, Query, language_model, synalinks):
_x0 = synalinks.Input(data_model=Query)
(_x1, _x2) = await synalinks.Branch(
question="Evaluate the difficulty to answer the provided query",
labels=["easy", "difficult"],
branches=[
synalinks.Generator(
data_model=Answer,
language_model=language_model,
),
synalinks.Generator(
data_model=AnswerWithThinking, language_model=language_model
),
],
return_decision=False,
)(_x0)
_x3 = _x1 | _x2
program_5 = synalinks.Program(
inputs=_x0,
outputs=_x3,
name="logical_or",
description="Illustrate the use of logical or",
)
return (program_5,)
@app.cell
def _(mo, program_5, synalinks):
synalinks.utils.plot_program(
program_5,
show_module_names=True,
show_schemas=True,
show_trainable=True,
)
return
@app.cell(hide_code=True)
async def _(mo):
mo.md(
r"""
## Conclusion
In this notebook, we explored the fundamental concepts of controlling information
flow within Synalinks programs. We intoduced the creation of parallel branches,
decision-making processes, and conditional branching, all of which are essential
for building dynamic and robust applications.
### Key Takeaways
- **Parallel Branches**: We demonstrated how to run modules in parallel using
the same inputs, leveraging asyncio for concurrent execution.
This approach enhances performance and allows for simultaneous processing of tasks.
- **Decision-Making**: We introduced decision-making as a form of single-label
classification, enabling the system to classify inputs based on predefined
questions and labels. This ensures that the system's responses are structured
and adhere to the specified schemas.
- **Conditional Branching**: We explored the use of the Branch module to route
input data models based on decisions, allowing for conditional execution of
branches. This feature is essential for creating adaptive and context-aware
applications.
- **Data Model Operators**: We discussed various data model operators, such as
concatenation, logical AND, and logical OR. These operators enable
sophisticated data manipulation and flow control, ensuring robust program
execution even when branches output None.
"""
)
return
if __name__ == "__main__":
app.run()