Spaces:
Sleeping
Sleeping
File size: 16,049 Bytes
d23f61d 54faac5 d23f61d 557655c d23f61d 557655c d23f61d 557655c d23f61d 9ba933a 44bb176 9ba933a d23f61d b9a71cb d23f61d 404a90b d23f61d 404a90b d23f61d 404a90b d23f61d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
import streamlit as st
import torch
from tqdm import tqdm
from peft import PeftModel, PeftConfig
from transformers import AutoModelForSeq2SeqLM, AutoModelForCausalLM
from transformers import AutoTokenizer
import numpy as np
import time
import string
# JS
import nltk
nltk.download('wordnet')
from nltk.corpus import wordnet as wn
from nltk.tokenize import word_tokenize
@st.cache_resource
def get_models(llama=False):
st.write('Loading the model...')
config = PeftConfig.from_pretrained("YouNameIt/T5ForReverseDictionary_prefix_tuned")
model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large")
model = PeftModel.from_pretrained(model, "YouNameIt/T5ForReverseDictionary_prefix_tuned")
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
# JS
if llama:
model_name = 'meta-llama/Llama-2-7b-chat-hf'
access_token = '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'
llama_tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token, use_fast=True)#, use_fast=True)
llama_model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=access_token, device_map={'':0})#, load_in_4bit=True)
st.write("The assistant is loaded and ready to use!")
return model, tokenizer, llama_model, llama_tokenizer
else:
st.write("_The assistant is loaded and ready to use! :tada:_")
return model, tokenizer
model, tokenizer = get_models()
def remove_punctuation(word):
# Create a translation table that maps all punctuation characters to None
translator = str.maketrans('', '', string.punctuation)
# Use the translate method to remove punctuation from the word
word_without_punctuation = word.translate(translator)
return word_without_punctuation
def return_top_k(sentence, k=10, word=None, rels=False):
if sentence[-1] != ".":
sentence = sentence + "."
if rels:
inputs = [f"Description : It is related to '{word}' but not '{word}'. Word : "]
else:
inputs = [f"Description : {sentence} Word : "]
inputs = tokenizer(
inputs,
padding=True, truncation=True,
return_tensors="pt",
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
with torch.no_grad():
inputs = {k: v.to(device) for k, v in inputs.items()}
output_sequences = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10, num_beams=k+5, num_return_sequences=k+5, #max_length=3,
top_p = 50, output_scores=True, return_dict_in_generate=True) #repetition_penalty=10000.0
logits = output_sequences['sequences_scores'].clone().detach()
decoded_probabilities = torch.softmax(logits, dim=0)
#all word predictions
predictions = [tokenizer.decode(tokens, skip_special_tokens=True) for tokens in output_sequences['sequences']]
probabilities = [round(float(prob), 2) for prob in decoded_probabilities]
stripped_sent = [remove_punctuation(word.lower()) for word in sentence.split()]
for pred in predictions:
if (len(pred) < 2) | (pred in stripped_sent):
predictions.pop(predictions.index(pred))
return predictions[:10]
# JS
def get_related_words(word, num=5):
model.eval()
with torch.no_grad():
sentence = [f"Descripton : It is related to {word} but not {word}. Word : "]
#inputs = ["Description: It is something to cut stuff with. Word: "]
print(sentence)
inputs = tokenizer(sentence, padding=True, truncation=True, return_tensors="pt",)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
batch = {k: v.to(device) for k, v in inputs.items()}
beam_outputs = model.generate(
input_ids=batch['input_ids'], max_new_tokens=10, num_beams=num+2, num_return_sequences=num+2, early_stopping=True
)
#beam_preds = [tokenizer.decode(beam_output.detach().cpu().numpy(), skip_special_tokens=True) for beam_output in beam_outputs if ]
beam_preds = []
for beam_output in beam_outputs:
prediction = tokenizer.decode(beam_output.detach().cpu().numpy(), skip_special_tokens=True).strip()
if prediction not in " ".join(sentence):
beam_preds.append(prediction)
return ", ".join(beam_preds[:num])
#if 'messages' not in st.session_state:
def get_text():
input_text = st.chat_input()
return input_text
def write_bot(input, remember=True, blink=True):
with st.chat_message('assistant'):
message_placeholder = st.empty()
full_response = input
if blink == True:
response = ''
for chunk in full_response.split():
response += chunk + " "
time.sleep(0.05)
# Add a blinking cursor to simulate typing
message_placeholder.markdown(response + "β")
time.sleep(0.5)
message_placeholder.markdown(full_response)
if remember == True:
st.session_state.messages.append({'role': 'assistant', 'content': full_response})
#def ask_if_helped():
#y = st.button('Yes!', key=60)
#n = st.button('No...', key=61)
#new = st.button('I have a new word', key=62)
#if y:
# write_bot("I am happy to help!")
# again = st.button('Play again')
# if again:
# write_bot("Please describe your word!")
# st.session_state.is_helpful['ask'] = False
#elif n:
# st.session_state.actions.append('cue')
# st.session_state.is_helpful['ask'] = False
# #cue_generation()
#elif new:
# write_bot("Please describe your word!")
# st.session_state.is_helpful['ask'] = False
## removed: if st.session_state.actions[-1] == "result":
# JS
def get_related_words_llama(relation, target, device, num=5):
prompt = f"Provide {num} {relation}s for the word '{target}'. Your answer consists of these {num} words only. Do not include the word '{target}' itself in your answer"
inputs = tokenizer([prompt], return_tensors='pt').to(device)
output = model.generate(
**inputs, max_new_tokens=40, temperature=.75, early_stopping=True,
)
chatbot_response = tokenizer.decode(output[:, inputs['input_ids'].shape[-1]:][0], skip_special_tokens=True).strip()
postproc = [word for word in word_tokenize(chatbot_response) if len(word)>=3]
return postproc[-num:] if len(postproc)>=num else postproc
def postproc_wn(related_words, syns=False):
if syns:
related_words = [word.split('.')[0] if word[0] != "." else word.split('.')[1] for word in related_words]
else:
related_words = [word.name().split('.')[0] if word.name()[0] != "." else word.name().split('.')[1] for word in related_words]
related_words = [word.replace("_", " ") for word in related_words]
return related_words
# JS
def get_available_cues(target):
wn_nouns = [word.name() for word in wn.all_synsets(pos='n')]
wn_nouns = [word.split('.')[0] if word[0] != "." else word.split('.')[1] for word in wn_nouns]
if target in wn_nouns:
available_cues = {}
synset_target = wn.synsets(target, pos=wn.NOUN)[0]
#if wn.synonyms(target)[0]:
# available_cues['Synonyms'] = postproc_wn(wn.synonyms(target)[0], syns=True)
#if synset_target.hypernyms():
# available_cues['Hypernyms'] = postproc_wn(synset_target.hypernyms())
#if synset_target.hyponyms():
# available_cues['Hyponyms'] = postproc_wn(synset_target.hyponyms())
if synset_target.examples():
examples = []
for example in synset_target.examples():
examples.append(example.replace(target, "..."))
available_cues['Examples'] = examples
return available_cues
else:
return None
# JS: moved the cue generation further down
#def cue_generation():
# if st.session_state.actions[-1] == 'cue':
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'results' not in st.session_state:
st.session_state.results = {'results': False, 'results_print': False}
if 'actions' not in st.session_state:
st.session_state.actions = [""]
if 'counters' not in st.session_state:
st.session_state.counters = {"letter_count": 0, "word_count": 0}
if 'is_helpful' not in st.session_state:
st.session_state.is_helpful = {'ask':False}
if 'descriptions' not in st.session_state:
st.session_state.descriptions = []
st.title("You name it! π£")
with st.chat_message('user', avatar='nursulu.jpg'):
st.write("Hey assistant!")
bot = st.chat_message('assistant')
bot.write("Hello human! Wanna practice naming some words?")
#for showing history of messages
for message in st.session_state.messages:
if message['role'] == 'user':
with st.chat_message(message['role'], avatar='nursulu.jpg'):
st.markdown(message['content'])
else:
with st.chat_message(message['role']):
st.markdown(message['content'])
#display user message in chat message container
prompt = get_text()
if prompt:
with st.chat_message('user', avatar='nursulu.jpg'):
st.markdown(prompt)
#add to history
st.session_state.messages.append({'role': 'user', 'content': prompt})
#TODO: replace it with zero-shot classifier
yes = ['yes', 'again', 'sure', 'new word', 'yes!', 'yep', 'yeah']
no = ['no', 'nope', 'nah']
try:
if prompt.lower() in yes:
write_bot("Please describe your word!")
elif prompt.lower() in no:
write_bot("Okay, see you next time then! :innocent:")
elif prompt == 'it is similar to the best place on earth':
write_bot("Great! Let me think what it could be...")
time.sleep(3)
write_bot("Do you mean Saarland?")
#if previously we asked to give a prompt
elif (st.session_state.messages[-2]['content'] == "Please describe your word!") & (st.session_state.messages[-1]['content'] != "no"):
write_bot("Great! Let me think what it could be...")
st.session_state.descriptions.append(prompt)
st.session_state.results['results'] = return_top_k(st.session_state.descriptions[-1])
st.session_state.results['results_print'] = dict(zip(range(1, 11), st.session_state.results['results']))
write_bot("I think I have some ideas. Do you want to see my guesses or do you want a cue?")
st.session_state.actions.append("result")
except:
write_bot("Sorry, I didn't understand you... I am still learning :sob: For now, could you respond with 'yes' or 'no'? ")
if st.session_state.actions[-1] == "result":
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
a1 = st.button('Results', key=10)
with col2:
a2 = st.button('Cue', key=11)
if a1:
write_bot("Here are my guesses about your word:")
st.write(st.session_state.results['results_print'])
time.sleep(1)
write_bot('Does it help you remember the word?', remember=False)
st.session_state.is_helpful['ask'] = True
elif a2:
#write_bot(f'The first letter is {st.session_state.results["results"][0][0]}.')
#time.sleep(1)
st.session_state.actions.append('cue')
#cue_generation()
#write_bot('Does it help you remember the word?', remember=False)
#st.session_state.is_helpful['ask'] = True
if st.session_state.is_helpful['ask']:
y = st.button('Yes!', key=60)
n = st.button('No...', key=61)
new = st.button('I have a new word', key=62)
if y:
write_bot("I am happy to help!")
again = st.button('Play again')
if again:
write_bot("Please describe your word!")
st.session_state.is_helpful['ask'] = False
elif n:
st.session_state.is_helpful['ask'] = False
st.session_state.actions.append('cue')
#cue_generation()
elif new:
write_bot("Please describe your word!")
st.session_state.is_helpful['ask'] = False
if st.session_state.actions[-1] == 'cue':
guessed = False
write_bot('What do you want to see?', remember=False, blink=False)
while guessed == False:
# JS
word_count = st.session_state.counters["word_count"]
target = st.session_state.results["results"][word_count]
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
b1 = st.button("Next letter", key="1")
with col2:
b2 = st.button("Related words")
with col3:
b3 = st.button("Next word", key="2")
with col4:
b4 = st.button("All words", key="3")
# JS
#if get_available_cues(target):
# avail_cues = get_available_cues(target)
#cues_buttons = {cue_type: st.button(cue_type) for cue_type in avail_cues}
b5 = st.button("I remembered the word!", key="4", type='primary')
b6 = st.button("Exit", key="5", type='primary')
new = st.button('Play again', key=64, type='primary')
if b1:
st.session_state.counters["letter_count"] += 1
#word_count = st.session_state.counters["word_count"]
letter_count = st.session_state.counters["letter_count"]
if letter_count < len(target):
write_bot(f'The word starts with {st.session_state.results["results"][word_count][:letter_count]}.', remember=False)
#ask_if_helped()
st.session_state.is_helpful['ask'] = True
else:
write_bot(f'This is my predicted word: "{target}". Does this match your query?')
#ask_if_helped()
st.session_state.is_helpful['ask'] = True
elif b2:
rels = return_top_k(st.session_state.descriptions[-1], word=target, rels=True)
write_bot(f'Here are words that are related to your word: {", ".join(rels)}.', remember=False)
#ask_if_helped()
st.session_state.is_helpful['ask'] = True
elif b3:
st.session_state.counters["letter_count"] = 1
letter_count = st.session_state.counters["letter_count"]
st.session_state.counters["word_count"] += 1
word_count = st.session_state.counters["word_count"]
#write_bot(f'The next word starts with {st.session_state.results["results"][word_count][:letter_count]}', remember=False)
if letter_count < len(target):
write_bot(f'The next word starts with {st.session_state.results["results"][word_count][:letter_count]}.', remember=False)
#ask_if_helped()
st.session_state.is_helpful['ask'] = True
else:
write_bot(f'This is my predicted word: "{target}". Does this match your query?')
#ask_if_helped()
st.session_state.is_helpful['ask'] = True
#elif get_available_cues(target) and "Synonyms" in cues_buttons and cues_buttons['Synonyms']:
#write_bot(f'Here are synonyms for the current word: {", ".join(avail_cues["Synonyms"])}', remember=False)
#elif get_available_cues(target) and "Hypernyms" in cues_buttons and cues_buttons['Hypernyms']:
#write_bot(f'Here are hypernyms for the current word: {", ".join(avail_cues["Hypernyms"])}', remember=False)
#elif get_available_cues(target) and "Hyponyms" in cues_buttons and cues_buttons['Hyponyms']:
#write_bot(f'Here are hyponyms for the current word: {", ".join(avail_cues["Hyponyms"])}', remember=False)
#elif get_available_cues(target) and "Examples" in cues_buttons and cues_buttons['Examples']:
#write_bot(f'Here are example contexts for the current word: {", ".join(avail_cues["Examples"])}', remember=False)
elif b4:
write_bot(f"Here are all my guesses about your word: {st.session_state.results['results_print']}")
elif b5:
write_bot("Yay! I am happy I could be of help!")
st.session_state.counters["word_count"] = 0
st.session_state.counters["letter_count"] = 0
new = st.button('Play again', key=63)
if new:
write_bot("Please describe your word!")
guessed = True
break
elif b6:
write_bot("I am sorry I couldn't help you this time. See you soon!")
st.session_state.counters["word_count"] = 0
st.session_state.counters["letter_count"] = 0
st.session_state.actions.append('cue')
if new:
write_bot("Please describe your word!")
st.session_state.counters["word_count"] = 0
st.session_state.counters["letter_count"] = 0
break
|