NursNurs commited on
Commit
cb64b2f
Β·
1 Parent(s): d23f61d

bug with file locations fixed

Browse files
Files changed (2) hide show
  1. app.py +23 -577
  2. pages/App.py +0 -25
app.py CHANGED
@@ -1,579 +1,25 @@
1
  import streamlit as st
2
- import torch
3
- from tqdm import tqdm
4
- from peft import PeftModel, PeftConfig
5
- from transformers import AutoModelForSeq2SeqLM, AutoModelForCausalLM
6
- from transformers import AutoTokenizer
7
- import numpy as np
8
- import time
9
- import string
10
 
11
- # JS
12
- import nltk
13
- nltk.download('wordnet')
14
- from nltk.corpus import wordnet as wn
15
- from nltk.tokenize import word_tokenize
16
-
17
- @st.cache_resource
18
- def get_models(llama=False):
19
- st.write('Loading the model...')
20
- # config = PeftConfig.from_pretrained("NursNurs/T5ForReverseDictionary")
21
- # model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large")
22
- # model = PeftModel.from_pretrained(model, "NursNurs/T5ForReverseDictionary")
23
-
24
- config = PeftConfig.from_pretrained("YouNameIt/T5ForReverseDictionary_prefix_tuned")
25
- model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large")
26
- model = PeftModel.from_pretrained(model, "YouNameIt/T5ForReverseDictionary_prefix_tuned")
27
-
28
- tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large")
29
-
30
- # JS
31
- if llama:
32
- model_name = 'meta-llama/Llama-2-7b-chat-hf'
33
- access_token = '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'
34
- llama_tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token, use_fast=True)#, use_fast=True)
35
- llama_model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=access_token, device_map={'':0})#, load_in_4bit=True)
36
- st.write("The assistant is loaded and ready to use!")
37
- return model, tokenizer, llama_model, llama_tokenizer
38
-
39
- else:
40
- st.write("_The assistant is loaded and ready to use! :tada:_")
41
- return model, tokenizer
42
-
43
- model, tokenizer = get_models()
44
-
45
- def remove_punctuation(word):
46
- # Create a translation table that maps all punctuation characters to None
47
- translator = str.maketrans('', '', string.punctuation)
48
-
49
- # Use the translate method to remove punctuation from the word
50
- word_without_punctuation = word.translate(translator)
51
-
52
- return word_without_punctuation
53
-
54
- def return_top_k(sentence, k=10, word=None, rels=False):
55
-
56
- if sentence[-1] != ".":
57
- sentence = sentence + "."
58
-
59
- if rels:
60
- inputs = [f"Description : It is related to '{word}' but not '{word}'. Word : "]
61
- else:
62
- inputs = [f"Description : {sentence} Word : "]
63
-
64
- inputs = tokenizer(
65
- inputs,
66
- padding=True, truncation=True,
67
- return_tensors="pt",
68
- )
69
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
70
- model.to(device)
71
-
72
- with torch.no_grad():
73
- inputs = {k: v.to(device) for k, v in inputs.items()}
74
- output_sequences = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10, num_beams=k+5, num_return_sequences=k+5, #max_length=3,
75
- top_p = 50, output_scores=True, return_dict_in_generate=True) #repetition_penalty=10000.0
76
-
77
- logits = output_sequences['sequences_scores'].clone().detach()
78
- decoded_probabilities = torch.softmax(logits, dim=0)
79
-
80
-
81
- #all word predictions
82
- predictions = [tokenizer.decode(tokens, skip_special_tokens=True) for tokens in output_sequences['sequences']]
83
- probabilities = [round(float(prob), 2) for prob in decoded_probabilities]
84
-
85
- stripped_sent = [remove_punctuation(word.lower()) for word in sentence.split()]
86
- for pred in predictions:
87
- if (len(pred) < 2) | (pred in stripped_sent):
88
- predictions.pop(predictions.index(pred))
89
-
90
- return predictions[:10]
91
-
92
- # JS
93
- def get_related_words(word, num=5):
94
- model.eval()
95
- with torch.no_grad():
96
- sentence = [f"Descripton : It is related to {word} but not {word}. Word : "]
97
- #inputs = ["Description: It is something to cut stuff with. Word: "]
98
- print(sentence)
99
- inputs = tokenizer(sentence, padding=True, truncation=True, return_tensors="pt",)
100
-
101
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
102
- model.to(device)
103
-
104
- batch = {k: v.to(device) for k, v in inputs.items()}
105
- beam_outputs = model.generate(
106
- input_ids=batch['input_ids'], max_new_tokens=10, num_beams=num+2, num_return_sequences=num+2, early_stopping=True
107
- )
108
-
109
- #beam_preds = [tokenizer.decode(beam_output.detach().cpu().numpy(), skip_special_tokens=True) for beam_output in beam_outputs if ]
110
- beam_preds = []
111
- for beam_output in beam_outputs:
112
- prediction = tokenizer.decode(beam_output.detach().cpu().numpy(), skip_special_tokens=True).strip()
113
- if prediction not in " ".join(sentence):
114
- beam_preds.append(prediction)
115
-
116
- return ", ".join(beam_preds[:num])
117
-
118
- #if 'messages' not in st.session_state:
119
-
120
- def get_text():
121
- input_text = st.chat_input()
122
- return input_text
123
-
124
- def write_bot(input, remember=True, blink=True):
125
- with st.chat_message('assistant'):
126
- message_placeholder = st.empty()
127
- full_response = input
128
- if blink == True:
129
- response = ''
130
- for chunk in full_response.split():
131
- response += chunk + " "
132
- time.sleep(0.05)
133
- # Add a blinking cursor to simulate typing
134
- message_placeholder.markdown(response + "β–Œ")
135
- time.sleep(0.5)
136
- message_placeholder.markdown(full_response)
137
- if remember == True:
138
- st.session_state.messages.append({'role': 'assistant', 'content': full_response})
139
-
140
- def ask_if_helped():
141
- y = st.button('Yes!', key=60)
142
- n = st.button('No...', key=61)
143
- new = st.button('I have a new word', key=62)
144
- if y:
145
- write_bot("I am happy to help!")
146
- again = st.button('Play again')
147
- if again:
148
- write_bot("Please describe your word!")
149
- st.session_state.is_helpful['ask'] = False
150
- elif n:
151
- st.session_state.actions.append('cue')
152
- st.session_state.is_helpful['ask'] = False
153
- #cue_generation()
154
- elif new:
155
- write_bot("Please describe your word!")
156
- st.session_state.is_helpful['ask'] = False
157
-
158
- ## removed: if st.session_state.actions[-1] == "result":
159
-
160
- # JS
161
- def get_related_words_llama(relation, target, device, num=5):
162
- prompt = f"Provide {num} {relation}s for the word '{target}'. Your answer consists of these {num} words only. Do not include the word '{target}' itself in your answer"
163
-
164
- inputs = tokenizer([prompt], return_tensors='pt').to(device)
165
- output = model.generate(
166
- **inputs, max_new_tokens=40, temperature=.75, early_stopping=True,
167
- )
168
- chatbot_response = tokenizer.decode(output[:, inputs['input_ids'].shape[-1]:][0], skip_special_tokens=True).strip()
169
-
170
- postproc = [word for word in word_tokenize(chatbot_response) if len(word)>=3]
171
-
172
- return postproc[-num:] if len(postproc)>=num else postproc
173
-
174
-
175
- def postproc_wn(related_words, syns=False):
176
- if syns:
177
- related_words = [word.split('.')[0] if word[0] != "." else word.split('.')[1] for word in related_words]
178
- else:
179
- related_words = [word.name().split('.')[0] if word.name()[0] != "." else word.name().split('.')[1] for word in related_words]
180
- related_words = [word.replace("_", " ") for word in related_words]
181
-
182
- return related_words
183
-
184
- # JS
185
- def get_available_cues(target):
186
- wn_nouns = [word.name() for word in wn.all_synsets(pos='n')]
187
- wn_nouns = [word.split('.')[0] if word[0] != "." else word.split('.')[1] for word in wn_nouns]
188
-
189
- if target in wn_nouns:
190
- available_cues = {}
191
- synset_target = wn.synsets(target, pos=wn.NOUN)[0]
192
-
193
- #if wn.synonyms(target)[0]:
194
- # available_cues['Synonyms'] = postproc_wn(wn.synonyms(target)[0], syns=True)
195
-
196
- #if synset_target.hypernyms():
197
- # available_cues['Hypernyms'] = postproc_wn(synset_target.hypernyms())
198
-
199
-
200
- #if synset_target.hyponyms():
201
- # available_cues['Hyponyms'] = postproc_wn(synset_target.hyponyms())
202
-
203
- if synset_target.examples():
204
- examples = []
205
-
206
- for example in synset_target.examples():
207
- examples.append(example.replace(target, "..."))
208
-
209
- available_cues['Examples'] = examples
210
-
211
- return available_cues
212
-
213
- else:
214
- return None
215
-
216
- # JS: moved the cue generation further down
217
- #def cue_generation():
218
- # if st.session_state.actions[-1] == 'cue':
219
-
220
- if 'messages' not in st.session_state:
221
- st.session_state.messages = []
222
-
223
- if 'results' not in st.session_state:
224
- st.session_state.results = {'results': False, 'results_print': False}
225
-
226
- if 'actions' not in st.session_state:
227
- st.session_state.actions = [""]
228
-
229
- if 'counters' not in st.session_state:
230
- st.session_state.counters = {"letter_count": 0, "word_count": 0}
231
-
232
- if 'is_helpful' not in st.session_state:
233
- st.session_state.is_helpful = {'ask':False}
234
-
235
- if 'descriptions' not in st.session_state:
236
- st.session_state.descriptions = []
237
-
238
- st.title("You name it! πŸ—£")
239
-
240
- # JS: would remove Simon by some neutral avatar
241
- with st.chat_message('user'):
242
- st.write("Hey assistant!")
243
-
244
- bot = st.chat_message('assistant')
245
- bot.write("Hello human! Wanna practice naming some words?")
246
-
247
- #for showing history of messages
248
- for message in st.session_state.messages:
249
- if message['role'] == 'user':
250
- with st.chat_message(message['role']):
251
- st.markdown(message['content'])
252
- else:
253
- with st.chat_message(message['role']):
254
- st.markdown(message['content'])
255
-
256
- #display user message in chat message container
257
- prompt = get_text()
258
- if prompt:
259
- #JS: would replace Simon by some neutral character
260
- with st.chat_message('user'):
261
- st.markdown(prompt)
262
- #add to history
263
- st.session_state.messages.append({'role': 'user', 'content': prompt})
264
- #TODO: replace it with zero-shot classifier
265
- yes = ['yes', 'again', 'Yes', 'sure', 'new word', 'yes!', 'yep', 'yeah']
266
- if prompt in yes:
267
- write_bot("Please describe your word!")
268
- elif prompt == 'It is similar to the best place on earth':
269
- write_bot("Great! Let me think what it could be...")
270
- time.sleep(3)
271
- write_bot("Do you mean Saarland?")
272
- #if previously we asked to give a prompt
273
- elif (st.session_state.messages[-2]['content'] == "Please describe your word!") & (st.session_state.messages[-1]['content'] != "no"):
274
- write_bot("Great! Let me think what it could be...")
275
- st.session_state.descriptions.append(prompt)
276
- st.session_state.results['results'] = return_top_k(st.session_state.descriptions[-1])
277
- st.session_state.results['results_print'] = dict(zip(range(1, 11), st.session_state.results['results']))
278
- write_bot("I think I have some ideas. Do you want to see my guesses or do you want a cue?")
279
- st.session_state.actions.append("result")
280
-
281
- if st.session_state.actions[-1] == "result":
282
- col1, col2, col3, col4, col5 = st.columns(5)
283
- with col1:
284
- a1 = st.button('Results', key=10)
285
- with col2:
286
- a2 = st.button('Cue', key=11)
287
- if a1:
288
- write_bot("Here are my guesses about your word:")
289
- st.write(st.session_state.results['results_print'])
290
- time.sleep(1)
291
- write_bot('Does it help you remember the word?', remember=False)
292
- st.session_state.is_helpful['ask'] = True
293
- elif a2:
294
- #write_bot(f'The first letter is {st.session_state.results["results"][0][0]}.')
295
- #time.sleep(1)
296
- st.session_state.actions.append('cue')
297
- #cue_generation()
298
- #write_bot('Does it help you remember the word?', remember=False)
299
- #st.session_state.is_helpful['ask'] = True
300
-
301
- if st.session_state.is_helpful['ask']:
302
- ask_if_helped()
303
-
304
- if st.session_state.actions[-1] == 'cue':
305
- guessed = False
306
- write_bot('What do you want to see?', remember=False, blink=False)
307
-
308
- while guessed == False:
309
- # JS
310
- word_count = st.session_state.counters["word_count"]
311
- target = st.session_state.results["results"][word_count]
312
-
313
- col1, col2, col3, col4, col5 = st.columns(5)
314
-
315
-
316
- with col1:
317
- b1 = st.button("Next letter", key="1")
318
- with col2:
319
- b2 = st.button("Related words")
320
- with col3:
321
- b3 = st.button("Next word", key="2")
322
- with col4:
323
- b4 = st.button("All words", key="3")
324
-
325
- # JS
326
- #if get_available_cues(target):
327
- # avail_cues = get_available_cues(target)
328
- #cues_buttons = {cue_type: st.button(cue_type) for cue_type in avail_cues}
329
-
330
- b5 = st.button("I remembered the word!", key="4", type='primary')
331
- b6 = st.button("Exit", key="5", type='primary')
332
- new = st.button('Play again', key=64, type='primary')
333
-
334
- if b1:
335
- st.session_state.counters["letter_count"] += 1
336
- #word_count = st.session_state.counters["word_count"]
337
- letter_count = st.session_state.counters["letter_count"]
338
- if letter_count < len(target):
339
- write_bot(f'The word starts with {st.session_state.results["results"][word_count][:letter_count]}. \n Does this help you remember the word?', remember=False)
340
- #ask_if_helped()
341
- st.session_state.is_helpful['ask'] = True
342
- else:
343
- write_bot(f'This is my predicted word: "{target}". Does this match your query?')
344
- #ask_if_helped()
345
- st.session_state.is_helpful['ask'] = True
346
-
347
- elif b2:
348
- rels = return_top_k(st.session_state.descriptions[-1], word=target, rels=True)
349
- write_bot(f'Here are words that are related to your word: {", ".join(rels)}. \n Does this help you remember the word?', remember=False)
350
- #ask_if_helped()
351
- st.session_state.is_helpful['ask'] = True
352
-
353
- elif b3:
354
- st.session_state.counters["letter_count"] = 1
355
- letter_count = st.session_state.counters["letter_count"]
356
- st.session_state.counters["word_count"] += 1
357
- word_count = st.session_state.counters["word_count"]
358
- #write_bot(f'The next word starts with {st.session_state.results["results"][word_count][:letter_count]}', remember=False)
359
- if letter_count < len(target):
360
- write_bot(f'The next word starts with {st.session_state.results["results"][word_count][:letter_count]}. \n Does this help you remember the word?', remember=False)
361
- #ask_if_helped()
362
- st.session_state.is_helpful['ask'] = True
363
- else:
364
- write_bot(f'This is my predicted word: "{target}". Does this match your query?')
365
- #ask_if_helped()
366
- st.session_state.is_helpful['ask'] = True
367
-
368
- #elif get_available_cues(target) and "Synonyms" in cues_buttons and cues_buttons['Synonyms']:
369
- #write_bot(f'Here are synonyms for the current word: {", ".join(avail_cues["Synonyms"])}', remember=False)
370
-
371
- #elif get_available_cues(target) and "Hypernyms" in cues_buttons and cues_buttons['Hypernyms']:
372
- #write_bot(f'Here are hypernyms for the current word: {", ".join(avail_cues["Hypernyms"])}', remember=False)
373
-
374
- #elif get_available_cues(target) and "Hyponyms" in cues_buttons and cues_buttons['Hyponyms']:
375
- #write_bot(f'Here are hyponyms for the current word: {", ".join(avail_cues["Hyponyms"])}', remember=False)
376
-
377
- #elif get_available_cues(target) and "Examples" in cues_buttons and cues_buttons['Examples']:
378
- #write_bot(f'Here are example contexts for the current word: {", ".join(avail_cues["Examples"])}', remember=False)
379
-
380
- elif b4:
381
- write_bot(f"Here are all my guesses about your word: {st.session_state.results['results_print']}")
382
-
383
- elif b5:
384
- write_bot("Yay! I am happy I could be of help!")
385
- st.session_state.counters["word_count"] = 0
386
- st.session_state.counters["letter_count"] = 0
387
- new = st.button('Play again', key=63)
388
- if new:
389
- write_bot("Please describe your word!")
390
- guessed = True
391
-
392
- break
393
-
394
- elif b6:
395
- write_bot("I am sorry I couldn't help you this time. See you soon!")
396
- st.session_state.counters["word_count"] = 0
397
- st.session_state.counters["letter_count"] = 0
398
- st.session_state.actions.append('cue')
399
-
400
- if new:
401
- write_bot("Please describe your word!")
402
- st.session_state.counters["word_count"] = 0
403
- st.session_state.counters["letter_count"] = 0
404
-
405
- break
406
-
407
- # elif prompt == 'results':
408
- # st.text("results")
409
- # st.write("results")
410
- # st.session_state.actions.append({'result': True})
411
- # st.write(st.session_state.actions)
412
- # with st.chat_message('user'):
413
- # custom_response = "Results"
414
- # st.markdown(custom_response)
415
- # st.session_state.messages.append({'role': 'user', 'content': custom_response})
416
-
417
- # with st.chat_message('assistant'):
418
- # message_placeholder = st.empty()
419
- # response = f"Here are my guesses about your word: {result_print}"
420
- # message_placeholder.markdown(response + "|")
421
- # st.session_state.messages.append({'role': 'assistant', 'content': response})
422
- # elif st.button('Cue'):
423
- # response = "Cue"
424
- # with st.chat_message('user'):
425
- # st.markdown(response)
426
- # st.session_state.messages.append({'role': 'user', 'content': response})
427
- # text = f'The first letter is {result[0][0]}.'
428
- # bot.write(text)
429
- # st.session_state.messages.append({'role': 'assistant', 'content': text})
430
- # letter_count = 1
431
- # word_count = 0
432
- # elif prompt == 'Results':
433
- # with st.chat_message('assistant'):
434
- # message_placeholder = st.empty()
435
- # response = f"Here are my guesses about your word: {result_print}"
436
- # message_placeholder.markdown(response + "|")
437
- # st.session_state.messages.append({'role': 'assistant', 'content': response})
438
-
439
- # #if you don't wanna practice word naming
440
- # else:
441
- # with st.chat_message('assistant'):
442
- # message_placeholder = st.empty()
443
- # response = "See you next time!"
444
- # message_placeholder.markdown(response + "|")
445
- # st.session_state.messages.append({'role': 'assistant', 'content': response})
446
-
447
-
448
-
449
- # if st.button('Results'):
450
- # bot.write("Here are my guesses about your word:")
451
- # bot.write(result_print)
452
- # elif st.button('Cue'):
453
- # bot.write(f'The first letter is {result[0][0]}.')
454
- # letter_count = 1
455
- # word_count = 0
456
- # answer = st.chat_input('Does it help you remember the word? Type yes or no')
457
- # if answer == "no":
458
- # bot.write("What do you want to see?")
459
- # if st.button('Next letter'):
460
- # letter_count += 1
461
- # bot.write(f'The word starts with {result[word_count][:letter_count]}')
462
- # elif st.button('Next word'):
463
- # letter_count = 1
464
- # bot.write(f'The next word starts with {result[word_count][:letter_count]}')
465
- # word_count += 1
466
- # elif st.button('All words'):
467
- # bot.write("Here are all my guesses about your word:")
468
- # bot.write(result_print)
469
- # bot.write("Does this help you remember your word?")
470
- # answer = st.chat_input('Type yes/no/exit')
471
- # if answer == 'Exit':
472
- # st.write("I am sorry I couldn't help you. See you next time!")
473
-
474
-
475
- #write down assistant's responses
476
- #response = f'Echo: {prompt}' #echoes prompt
477
- # with st.chat_message('assistant'):
478
- # message_placeholder = st.empty()
479
- # full_response = "yeee"
480
- # #here insert the loop with the model answers (for response in...)
481
- # #this to imitate a cursor
482
- # message_placeholder.markdown(full_response + "|")
483
-
484
- # #add to history
485
- # st.session_state.messages.append({'role': 'assistant', 'content': full_response})
486
-
487
-
488
-
489
- ##TODO: a button to delete history
490
- # if prompt == 'Yes':
491
- # bot.write("Great! Please describe the word you have in mind.")
492
- # sent = st.chat_input('Description of your word')
493
-
494
-
495
- # # adding the text that will show in the text box as default
496
- # default_value = "Type the description of the word you have in mind!"
497
-
498
- # sent = st.text_area("Text", default_value, height = 50)
499
- # result = return_top_k(sent)
500
- # result = ['animal', 'monster', 'creature', 'bird', 'cat', 'human', 'dog', 'spider', 'alien', 'meow']
501
- # result = return_top_k(sent)
502
- # result_print = dict(zip(range(1, 11), result))
503
-
504
- # if st.button('Results'):
505
- # st.write("Here are my guesses about your word:")
506
- # st.write(result_print)
507
- # elif st.button('Cue'):
508
- # st.write(f'The first letter is {result[0][0]}.')
509
- # letter_count = 1
510
- # word_count = 0
511
- # answer = st.text_area("Text", 'Does it help you remember the word? Type yes or no', height = 50)
512
- # if answer == 'No':
513
- # while answer == 'No':
514
- # option = st.selectbox(
515
- # 'What do you want to see?',
516
- # ('Next letter', 'Next word', 'All words'))
517
- # if option == 'Next letter':
518
- # letter_count += 1
519
- # st.write(f'The word starts with {result[word_count][:letter_count]}')
520
- # elif option == 'Next word':
521
- # letter_count = 1
522
- # st.write(f'The next word starts with {result[word_count][:letter_count]}')
523
- # word_count += 1
524
- # else:
525
- # st.write("Here are all my guesses about your word:")
526
- # st.write(result_print)
527
- # answer = st.selectbox(
528
- # 'Does it help you remember the word??',
529
- # ('Yes', 'No', 'Exit'))
530
- # if answer == 'Exit':
531
- # st.write("I am sorry I couldn't help you. See you next time!")
532
- # break
533
- # else:
534
- # st.write("I am happy I could be of help!")
535
- # else:
536
- # st.write('Do you want to see my guesses or do you want a cue?')
537
-
538
-
539
- #2
540
-
541
- # option = st.selectbox(
542
- # 'Do you want to see my guesses or do you want a cue?',
543
- # ('Results', 'Cue'))
544
-
545
- # st.write('You selected:', option)
546
-
547
- # if option == 'Results':
548
- # st.write("Here are my guesses about your word:")
549
- # st.write(result_print)
550
- # elif option == 'Cue':
551
- # st.write(f'The first letter is {result[0][0]}.')
552
- # letter_count = 1
553
- # word_count = 0
554
- # answer = st.selectbox(
555
- # 'Does it help you remember the word??',
556
- # ('Yes', 'No'))
557
- # if answer == 'No':
558
- # while answer == 'No':
559
- # option = st.selectbox(
560
- # 'What do you want to see?',
561
- # ('Next letter', 'Next word', 'All words'))
562
- # if option == 'Next letter':
563
- # letter_count += 1
564
- # st.write(f'The word starts with {result[word_count][:letter_count]}')
565
- # elif option == 'Next word':
566
- # letter_count = 1
567
- # st.write(f'The next word starts with {result[word_count][:letter_count]}')
568
- # word_count += 1
569
- # else:
570
- # st.write("Here are all my guesses about your word:")
571
- # st.write(result_print)
572
- # answer = st.selectbox(
573
- # 'Does it help you remember the word??',
574
- # ('Yes', 'No', 'Exit'))
575
- # if answer == 'Exit':
576
- # st.write("I am sorry I couldn't help you. See you next time!")
577
- # break
578
- # else:
579
- # st.write("I am happy I could be of help!")
 
1
  import streamlit as st
 
 
 
 
 
 
 
 
2
 
3
+ st.set_page_config(
4
+ page_title="You Name It!",
5
+ page_icon="πŸ‘‹",
6
+ )
7
+
8
+ st.write("# Welcome to YouNameIt chatbot! πŸ‘‹")
9
+
10
+ st.sidebar.success("Select a chatbot mode above.")
11
+
12
+ st.markdown(
13
+ """
14
+ YouNameIt is a project helping people with aphasia practice their word retrieval skill and assisting them to remember words on a daily basis.
15
+ **πŸ‘ˆ Select a chatbot mode from the sidebar** to test our app!
16
+ ### What new features are planned?
17
+ - Adaptation to German language and more;
18
+ - Speech-to-text suppport;
19
+ - Android & IOS mobile apps.
20
+ ### For any suggestions or ideas please contact us.
21
+ - Julian []()
22
+ - Nursulu []()
23
+ """
24
+ )
25
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/App.py DELETED
@@ -1,25 +0,0 @@
1
- import streamlit as st
2
-
3
- st.set_page_config(
4
- page_title="You Name It!",
5
- page_icon="πŸ‘‹",
6
- )
7
-
8
- st.write("# Welcome to YouNameIt chatbot! πŸ‘‹")
9
-
10
- st.sidebar.success("Select a chatbot mode above.")
11
-
12
- st.markdown(
13
- """
14
- YouNameIt is a project helping people with aphasia practice their word retrieval skill and assisting them to remember words on a daily basis.
15
- **πŸ‘ˆ Select a chatbot mode from the sidebar** to test our app!
16
- ### What new features are planned?
17
- - Adaptation to German language and more;
18
- - Speech-to-text suppport;
19
- - Android & IOS mobile apps.
20
- ### For any suggestions or ideas please contact us.
21
- - Julian []()
22
- - Nursulu []()
23
- """
24
- )
25
-