File size: 2,963 Bytes
8b582d7
e7abd03
 
 
 
 
 
1f3ecf4
259ef44
e7abd03
 
6c4a2c9
e7abd03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f729e6
e7abd03
 
6f729e6
e7abd03
 
6f729e6
 
 
e7abd03
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import gradio as gr
import pandas as pd
import numpy as np
from transformers import pipeline, BertTokenizer, BertModel
import faiss
import torch
import json
import spaces

# Load CSV data
data = pd.read_csv('RBDx10kstats.csv')

# Function to safely convert JSON strings to numpy arrays
def safe_json_loads(x):
    try:
        return np.array(json.loads(x), dtype=np.float32)  # Ensure the array is of type float32
    except json.JSONDecodeError as e:
        print(f"Error decoding JSON: {e}")
        return np.array([], dtype=np.float32)  # Return an empty array or handle it as appropriate

# Apply the safe_json_loads function to the embedding column
data['embedding'] = data['embedding'].apply(safe_json_loads)

# Filter out any rows with empty embeddings
data = data[data['embedding'].apply(lambda x: x.size > 0)]

# Initialize FAISS index
dimension = len(data['embedding'].iloc[0])
res = faiss.StandardGpuResources()  # use a single GPU

# Create FAISS index
if faiss.get_num_gpus() > 0:
    gpu_index = faiss.IndexFlatL2(dimension)
    gpu_index = faiss.index_cpu_to_gpu(res, 0, gpu_index)  # move to GPU
else:
    gpu_index = faiss.IndexFlatL2(dimension)  # fall back to CPU

# Ensure embeddings are stacked as float32
embeddings = np.vstack(data['embedding'].values).astype(np.float32)
gpu_index.add(embeddings)

# Check if GPU is available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Load QA model
qa_model = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad", device=0 if torch.cuda.is_available() else -1)

# Load BERT model and tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased').to(device)

# Function to embed the question using BERT
def embed_question(question, model, tokenizer):
    inputs = tokenizer(question, return_tensors='pt').to(device)
    with torch.no_grad():
        outputs = model(**inputs)
    return outputs.last_hidden_state.mean(dim=1).cpu().numpy().astype(np.float32)

# Function to retrieve the relevant document and generate a response
@spaces.GPU(duration=120)
def retrieve_and_generate(question):
    # Embed the question
    question_embedding = embed_question(question, model, tokenizer)
    
    # Search in FAISS index
    _, indices = gpu_index.search(question_embedding, k=1)
    
    # Retrieve the most relevant document
    relevant_doc = data.iloc[indices[0][0]]
    
    # Use the QA model to generate the answer
    context = relevant_doc['Abstract']
    response = qa_model(question=question, context=context)
    
    return response['answer']

# Create a Gradio interface
interface = gr.Interface(
    fn=retrieve_and_generate,
    inputs=gr.Textbox(lines=2, placeholder="Ask a question about the documents..."),
    outputs="text",
    title="RAG Chatbot",
    description="Ask questions about the documents in the CSV file."
)

# Launch the Gradio app
interface.launch()